Аннотация:
Исследована обратная задача идентификации безразмерного коэффициента теплопроводности для уравнения Грина – Нагди III типа, которое описывает распространение тепловых возмущений с конечной скоростью и учитывает инерционные эффекты теплового потока. Для обратной задачи нарушается требование устойчивости (критерий Адамара), в результате чего даже минимальные искажения данных ведут к значительным ошибкам идентификации параметра.
В качестве метода решения задачи идентификации использован подход на основе физически информированных нейронных сетей (ФИНС), сочетающий возможности глубокого обучения с априорными знаниями о структуре дифференциального уравнения. Параметр включен в число обучаемых переменных, а функция потерь сформирована на основе дифференциального уравнения, граничных условий, начальных условий и зашумленных экспериментальных данных с точечного датчика. Представлены результаты вычислительных экспериментов, демонстрирующие высокую точность восстановления параметра (погрешность менее 0.03%) и устойчивость метода к наличию аддитивного гауссовского шума в данных. Метод ФИНС показал себя как эффективный инструмент решения некорректных обратных задач математической физики.