• Main Navigation
  • Main Content
  • Sidebar

Russian Digital Libraries Journal

  • Home
  • About
    • About the Journal
    • Aims and Scopes
    • Themes
    • Editor-in-Chief
    • Editorial Team
    • Submissions
    • Open Access Statement
    • Privacy Statement
    • Contact
  • Current
  • Archives
  • Register
  • Login
  • Search
Published since 1998
ISSN 1562-5419
16+
Language
  • Русский
  • English

Search

Advanced filters

Search Results

Using syntax for sentiment analysis of russian tweets

Юлия Владимировна Адаскина, Полина Вадимовна Паничева, Андрей Михайлович Попов
163-184
Abstract:

The paper describes our approach to the task of sentiment analysis of tweets within SentiRuEval – an open evaluation of sentiment analysis systems for the Russian language. We took part in the task of sentiment analysis of Russian tweets concerning two types of organizations: banks and telecommunications companies. On both datasets, the participants were required to perform a three-way classification of tweets: positive, negative or neutral.

We used various statistical methods as basis for our machine learning algorithms. Linguistic features produced by our morpho-syntactic analyzer are applied to the classification. Syntactic relations proved to be a crucial feature for any statistical method evaluated, and SVM-based classification performed better than the others. Normalized words are another important feature for the algorithm.

The evaluation revealed that our method proved to be rather successful: we scored the first in three out of four evaluation measures.

Keywords: sentiment analysis, syntactical relations, Russian language, statistical methods, text classification.
1 - 1 of 1 items
Information
  • For Readers
  • For Authors
  • For Librarians
Make a Submission
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo

Russian Digital Libraries Journal

ISSN 1562-5419

Information

  • About the Journal
  • Aims and Scopes
  • Themes
  • Author Guidelines
  • Submissions
  • Privacy Statement
  • Contact
  • eLIBRARY.RU
  • dblp computer science bibliography

Send a manuscript

Authors need to register with the journal prior to submitting or, if already registered, can simply log in and begin the five-step process.

Make a Submission
About this Publishing System

© 2015-2025 Kazan Federal University; Institute of the Information Society