• Main Navigation
  • Main Content
  • Sidebar

Russian Digital Libraries Journal

  • Home
  • About
    • About the Journal
    • Aims and Scopes
    • Themes
    • Editor-in-Chief
    • Editorial Team
    • Submissions
    • Open Access Statement
    • Privacy Statement
    • Contact
  • Current
  • Archives
  • Register
  • Login
  • Search
Published since 1998
ISSN 1562-5419
16+
Language
  • Русский
  • English

Search

Advanced filters

Search Results

Controlled Face Generation System using StyleGAN2 Neural Network

Marat Isangulov, Razil Minneakhmetov, Almaz Khamedzhanov, Timur Khafizyanov, Emil Pashaev, Ernest Kalimullin
466-482
Abstract:

A novel approach to supervised face generation using open-source generative models including StyleGAN2 and Ridge Regression is presented. A methodology that extends StyleGAN2 to control facial characteristics such as age, race, gender, facial expression, and hair attributes is developed, and an extensive dataset of human faces with attribute annotations is utilized. The faces were encoded in 256-dimensional latent space using the StyleGAN2 encoder, resulting in a set of characteristic latent codes. We applied the t-SNE algorithm to cluster these feature-based codes, demonstrated the ability to control face generation, and subsequently trained Ridge regression models for each dimension of the latent codes using the labeled features. When decoded using StyleGAN2, the resulting codes successfully reconstructed face images while maintaining the association with the input features. The developed approach provides an easy and efficient way to supervised face generation using existing generative models such as StyleGAN2, and opens up new possibilities for different application areas.

Keywords: machine learning, face generation, StyleGan, encoder, decoder, latent codes, feature mapping, ridge regression.
1 - 1 of 1 items
Information
  • For Readers
  • For Authors
  • For Librarians
Make a Submission
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo

Russian Digital Libraries Journal

ISSN 1562-5419

Information

  • About the Journal
  • Aims and Scopes
  • Themes
  • Author Guidelines
  • Submissions
  • Privacy Statement
  • Contact
  • eLIBRARY.RU
  • dblp computer science bibliography

Send a manuscript

Authors need to register with the journal prior to submitting or, if already registered, can simply log in and begin the five-step process.

Make a Submission
About this Publishing System

© 2015-2025 Kazan Federal University; Institute of the Information Society