Аннотация:
Несмотря на значительный прогресс, технологии оптического распознавания символов (OCR) для исторических газет по-прежнему допускают 5–10% ошибок на уровне символов. В работе представлена полностью автоматизированная система нормализации пост-OCR, объединяющая легкие языковые модели (LLM) объемом 7–8 млрд параметров, обученные по инструкциям и квантизованные до 4 бит (INT4), с небольшим набором регулярных выражений. На наборе данных BLN600 (600 страниц британских газет XIX в.) лучшая модель YandexGPT-5-Instruct Q4 снижает Character Error Rate (CER) с 8.4% до 4.0% (–52.5%) и Word Error Rate (WER) с 20.2% до 6.5% (–67.8%), повышая при этом семантическое сходство до 0.962. Система работает на потребительском оборудовании (RTX-4060 Ti, 8 ГБ VRAM) со скоростью около 35 секунд на страницу и не требует дополнительного обучения или параллельных данных. Полученные результаты показывают, что компактные INT4-LLM являются практичной альтернативой крупным моделям для постобработки OCR исторических документов.