Аннотация:
Метаданные научных публикаций используются для построения каталогов, определения цитируемости публикаций и решения других задач. Автоматизация извлечения метаданных из PDF-файлов позволяет ускорить выполнение обозначенных задач, а от качества извлеченных данных зависит возможность их дальнейшего использования. Проанализированы существующие программные решения, в итоге отобраны три: GROBID, CERMINE, ScientificPdfParser. Предложена методика сравнения этих программных решений распознавания текстов научных публикаций по качеству извлечения метаданных. На основе методики проведен эксперимент по извлечению четырех типов метаданных (название, аннотация, дата публикации, имена авторов). Для сравнения программных решений использован набор из 112457 публикаций с разбиением на 23 предметные области, сформированный на основе данных Semantic Scholar. Приведен пример выбора эффективного программного решения извлечения метаданных в условиях заданных приоритетов для предметных областей и типов метаданных с использованием взвешенной суммы. Определено, что для приведенного примера CERMINE показывает эффективность на 10,5% выше, чем GROBID, и на 9,6% выше, чем ScientificPdfParser.