• Main Navigation
  • Main Content
  • Sidebar

Russian Digital Libraries Journal

  • Home
  • About
    • About the Journal
    • Aims and Scopes
    • Themes
    • Editor-in-Chief
    • Editorial Team
    • Submissions
    • Open Access Statement
    • Privacy Statement
    • Contact
  • Current
  • Archives
  • Register
  • Login
  • Search
Published since 1998
ISSN 1562-5419
16+
Language
  • Русский
  • English

Search

Advanced filters

Search Results

Of Neural Network Model Robustness Through Generating Invariant to Attributes Embeddings

Marat Rushanovich Gazizov, Karen Albertovich Grigorian
1142-1154
Abstract:

Model robustness to minor deviations in the distribution of input data is an important criterion in many tasks. Neural networks show high accuracy on training samples, but the quality on test samples can be dropped dramatically due to different data distributions, a situation that is exacerbated at the subgroup level within each category. In this article we show how the robustness of the model at the subgroup level can be significantly improved with the help of the domain adaptation approach to image embeddings. We have found that application of a competitive approach to embeddings limitation gives a significant increase of accuracy metrics in a complex subgroup in comparison with the previous models. The method was tested on two independent datasets, the accuracy in a complex subgroup on the Waterbirds dataset is 90.3 {y : waterbirds;a : landbackground}, on the CelebA dataset is 92.22 {y : blondhair;a : male}.

Keywords: robust classification, image classification, generative adversarial networks, domain adaptation.
1 - 1 of 1 items
Information
  • For Readers
  • For Authors
  • For Librarians
Make a Submission
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo

Russian Digital Libraries Journal

ISSN 1562-5419

Information

  • About the Journal
  • Aims and Scopes
  • Themes
  • Author Guidelines
  • Submissions
  • Privacy Statement
  • Contact
  • eLIBRARY.RU
  • dblp computer science bibliography

Send a manuscript

Authors need to register with the journal prior to submitting or, if already registered, can simply log in and begin the five-step process.

Make a Submission
About this Publishing System

© 2015-2025 Kazan Federal University; Institute of the Information Society