Аннотация:
Проведен сравнительный анализ методов сегментации изображений пожара с использованием пороговой обработки в цветовом пространстве HSV и нейронной сети U-Net. Цель исследования заключалась в оценке эффективности этих подходов по времени выполнения и точности детекции огня на основе метрик RMSE, IoU, Dice и MAPE. Эксперименты были проведены на четырех различных изображениях пожара с вручную подготовленными истинными масками пожаров. Результаты показали, что метод HSV обеспечивает высокую скорость обработки (0.0010–0.0020 с), но склонен к детекции не только огня, но и дыма, что снижает его точность (IoU 0.0863–0.3357, Dice 0.1588–0.5026). Нейронная сеть U-Net демонстрирует более высокую точность сегментации огня (IoU – до 0.6015, Dice – до 0.7512) за счет избирательного выделения пламени, однако требует значительно большего времени (1.2477–1.3733 с) и может недооценивать общую площадь пожара (MAPE – до 78.5840%). Визуальная оценка подтвердила различия в поведении методов: HSV захватывает дым как часть целевой области, тогда как U-Net фокусируется исключительно на огне. Выбор между методами зависит от приоритетов задачи: скорости или точности. Предложены направления дальнейших исследований, включая оптимизацию U-Net и разработку гибридных подходов.