• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Решение задачи классификации эмоционального тона сообщения с определением наиболее подходящей архитектуры нейронной сети

Данис Ильмасович Багаутдинов, Рихам Салман, Владислав Алексеевич Алексеев, Рустамджон Муроджонович Усмонов
396-413
Аннотация:

Для определения наиболее эффективного подхода к решению задачи классификации эмоционального тона сообщения проведено обучение выбранных моделей нейронной сети на различных наборах обучающих данных. На основе такого показателя, как процентное соотношение правильно данных ответов на тестовом наборе данных, сравнены комбинации наборов обучающих данных и различных моделей, обученных на основе этих данных. Произведено обучение четырех моделей нейронной сети на трех различных наборах обучающих данных. В результате сравнения точности ответов каждой модели, обученной на разных обучающих данных, сделаны выводы о выборе модели нейронной сети, наиболее подходящей для решения поставленной задачи.

Ключевые слова: NLP, sentiment detection, neural networks, comparison of neural network models, LSTM, CNN, BiLSTM.
1 - 1 из 1 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества