• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Электронный архив академика А.П.Ершова

С.В. Антюфеев, А.Г. Марчук, А.Н. Немов, В.Э. Филиппов, Н.А. Черемных
Аннотация: Подводятся итоги работы по созданию Электронного архива академика А. П. Ершова, рассказывается о некоторых интересных страницах этого архива, о технологических особенностях проектных решений, о деталях реализации проекта.

Классификация изображений с помощью сверточных нейронных сетей

Сергей Алексеевич Филиппов
366-382
Аннотация:

Для классификации изображений в настоящее время можно применить множество различных инструментов, каждый из которых направлен на решение определенного спектра задач. В статье проведен краткий обзор библиотек и технологий для классификации изображений. Построена архитектура простой свёрточной нейронной сети для классификации изображений.


Были проведены эксперименты по распознаванию изображений с такими популярными нейронными сетями, как VGG16 и ResNet 50. Обе нейронные сети показали хорошие результаты. Однако ResNet 50 переобучилась из-за того, что в наборе данных присутствовали однотипные изображения для обучения, поскольку в данной нейронной сети больше слоев, позволяющих считывать признаки объектов на изображениях. С обученными моделями был проведен сравнительный анализ по распознаванию изображений, специально подготовленных для этого эксперимента.


Для классификации изображений в настоящее время можно применить множество различных инструментов, каждый из которых направлен на решение определенного спектра задач. В статье проведен краткий обзор библиотек и технологий для классификации изображений. Построена архитектура простой свёрточной нейронной сети для классификации изображений.


Были проведены эксперименты по распознаванию изображений с такими популярными нейронными сетями, как VGG16 и ResNet 50. Обе нейронные сети показали хорошие результаты. Однако ResNet 50 переобучилась из-за того, что в наборе данных присутствовали однотипные изображения для обучения, поскольку в данной нейронной сети больше слоев, позволяющих считывать признаки объектов на изображениях. С обученными моделями был проведен сравнительный анализ по распознаванию изображений, специально подготовленных для этого эксперимента.

Ключевые слова: распознавание изображений, нейронная сеть, сверточная нейронная сеть, классификация изображений, машинное обучение.

Извлечение заголовков из PDF-документов научной тематики

Дмитрий Сергеевич Филиппов
392-411
Аннотация:

Актуальность представленного исследования обусловлена бедностью существующих подходов к извлечению заголовков из PDF-документов, предложенных в более ранних исследованиях, которые используют либо машинное обучение, либо простые эвристики. Цель настоящего исследования – предоставить более проработанные подходы к общей задаче извлечения заголовка документа и предложить лучший алгоритм выделения его из документов научной тематики. Основная методика, использованная нами при выборе решения, – рассмотреть, как можно большее количество различных ситуаций относительно форматирования заголовка, возникающих в разных документах, и предложить решение для каждой из них, а затем обобщить их в полноценный подход. Результаты выбранного подхода показали его эффективность по сравнению с методами других исследователей, если в нашем распоряжении находятся документы с различными вариациями оформления, структурной организации и форматирования. Данное исследование показало, что глубокое исследование задачи – перспективный путь для разработки лучших решений и инструментов. Статья будет полезна исследователям и разработчикам, которые часто встречаются с проблемой извлечения заголовков как одной из подзадач анализа документов.

Ключевые слова: Pdf processing, title extraction, header extraction, strategy based approach, title heuristic, structural analysis, style information, text analysis, document analysis, information extraction, анализ текстов, автоматическая обработка документов.

Среда интеграции пространственных данных «ГеоМета»

О.М. Атаева, К.А. Кузнецов, В.А. Серебряков, В.И. Филиппов
Аннотация: Приводится описание стандартизированной и децентрализованной среды управления пространственной информацией на основе портала пространственных данных «ГеоМета», разработанного для доступа к базам геоданных, картографическим продуктам и связанным с ними метаданным из различных источников. Рассматриваются основные возможности портала с акцентом на расширения, реализованные в его последних версиях.
Ключевые слова: пространственные данные, инфраструктура пространственных данных, геопортал, метаданные.
1 - 4 из 4 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества