Аннотация:
Рассмотрена задача ускорения построения точной редакторской разметки рукописных архивных текстов в рамках инкрементного цикла обучения на основе слабой расшифровки. В отличие от ранее опубликованных результатов, основное внимание уделено интеграции автоматической посткоррекции слабой расшифровки с помощью больших языковых моделей (Large Language Models, LLM). Предложен и реализован протокол применения LLM на уровне строк в режиме обучения на нескольких примерах с тщательно сконструированными промптами и контролем формата вывода (сохранение дореформенной орфографии, защита имен и числительных, запрет на изменение структуры строк). Эксперименты проведены на корпусе дневников А. В. Сухово-Кобылина. В качестве базовой модели распознавания использована строчная версия модели Vertical Attention Network. Результаты показали, что LLM-коррекция на примере сервиса ChatGPT-4o заметно улучшает читабельность слабой разметки и существенно снижает процент ошибок в словах (в нашем опыте – порядка −12 процентных пунктов), при этом не внося ухудшения в проценте ошибок в буквах. Другой исследуемый сервис – DeepSeek-R1 – показал менее стабильное поведение. Рассмотрены практические настройки промптов, ограничения (контекстные лимиты, риск «галлюцинаций») и даны рекомендации по безопасной интеграции LLM-коррекции в итерационный пайплайн разметки с целью сокращения трудозатрат эксперта-асессора и ускорения оцифровки исторических архивов.