• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Применение машинного обучения к задаче генерации поисковых запросов

Александр Михайлович Гусенков, Алина Рафисовна Ситтикова
272-293
Аннотация:

Исследованы две модификации рекуррентных нейронных сетей: сети с долгой краткосрочной памятью и сети с управляемым рекуррентным блоком с добавлением механизма внимания к обеим сетям, а также модель Transformer в задаче генерации запросов к поисковым системам. В качестве модели Transformer использована модель GPT-2 от OpenAI, которая обучалась на запросах пользователей. Проведен латентно-семантический анализ для определения семантических сходств между корпусом пользовательских запросов и запросов, генерируемых нейронными сетями. Для проведения анализа корпус был переведен в формат bag of words, к нему применена модель TFIDF, проведено сингулярное разложение. Семантическое сходство вычислялось на основе косинусной меры. Также для более полной оценки применимости моделей к задаче был проведен экспертный анализ для оценки связности слов в искусственно созданных запросах.

Ключевые слова: обработка естественного языка, генерация естественного языка, машинное обучение, нейронные сети.
1 - 1 из 1 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества