Опубликован: 11.07.2024

Модель лингвистического графа знаний «Turklang» как база для создания инструментов обучения тюркским языкам

Айрат Рафизович Гатиатуллин, Николай Аркадиевич Прокопьев
251-265
Аннотация:

Описаны элементы модели лингвистического графа знаний «Turklang», разработанного в Институте прикладной семиотики АН РТ и используемого в качестве базы для создания ряда лингвистических ресурсов и инструментов: портал «Тюркская морфема», электронный корпус татарского языка «Туган Тел», лингвистические процессоры.


Для создания образовательной среды необходимы предметно-ориентированные графы знаний, для получения которых не применимы методы создания общих и открытых графов. В работе описаны лингвистические графы знаний, которые отображают, с одной стороны, потенциальные возможности тюркских языков, с другой стороны, примеры реального использования в текстах. Особенность этих графов знаний заключается в том, что они содержат лингвистические единицы разных языковых уровней, а также семантические универсалии, соответствующие значениям этих лингвистических единиц, которые встроены в единую модель лингвистического графа знаний. Структура такого графа знаний позволяет формировать учебные курсы, строить индивидуальную образовательную траекторию, а также создавать задания и средства автоматизированной проверки в рамках контроля знаний при обучении тюркским языкам. Это дает возможность разрабатывать впоследствии, на основе этих графов, программы обучения с учетом структурно-функциональных особенностей тюркских языков, а также способствует реализации индивидуальных целей обучающихся.

Проектирование и разработка обучающего блокчейн-симулятора

Олег Максимович Меховников, Александр Сергеевич Тощев
266-277
Аннотация:

Представлен блокчейн-симулятор, предназначенный для обучения студентов и начинающих блокчейн-разработчиков. Симулятор создан с целью предоставить пользователям интуитивно понятное и доступное средство для изучения основных концепций и механизмов функционирования блокчейна. Рассмотрены основные аспекты проектирования и архитектуры симулятора, а также представлена демонстрация работы приложения. Разработанный симулятор способствует привлечению новых специалистов в сферу блокчейн-разработки.

Автоматизированное оценивание коротких ответов обучающихся с использованием языковых моделей

Чулпан Бакиевна Миннегалиева, Ильнур Илхамович Кашапов, Ольга Дмитриевна Морозова
278-293
Аннотация:

Методы проверки ответов обучающихся с использованием языковых моделей в настоящее время исследуются разными специалистами. Результаты автоматизированного оценивания зависят от предметной области и особенностей учебной дисциплины. В работе проанализированы ответы студентов, полученные в ходе изучения курса «Компьютерная графика и дизайн». При помощи языковых моделей определены векторы документов. Предложен метод оценивания ответов через нахождение косинусного сходства полученных векторов и уточнение оценок проверкой ключевых слов. Результаты могут использоваться при предварительной проверке ответов студентов и являются базой для дальнейших исследований. 

Анализ моделей машинного обучения на основе методов объяснимого искусственного интеллекта в образовательной аналитике

Дмитрий Артурович Минуллин, Фаиль Мубаракович Гафаров
294-315
Аннотация:

Проблема прогнозирования досрочного отчисления студентов российских вузов является актуальной, поэтому требуется разработка новых инновационных подходов для её решения. Для решения данной проблемы возможна разработка предиктивных систем на основе использования данных о студентах, имеющихся в информационных системах вузов. В настоящей работе исследованы модели машинного обучения для прогнозирования досрочного отчисления студентов, обученные на основе данных о характеристиках и успеваемости студентов. Основная научная новизна работы заключается в использовании методов объяснимого ИИ для интерпретации и объяснения функционирования обученных моделей машинного обучения. Методы объяснимого искусственного интеллекта позволяют понять, какие из входных признаков (характеристик студента) оказывают наибольшее влияние на результаты прогнозов обученных моделей, а также могут помочь понять, почему модели принимают те или иные решения. Полученные результаты расширяют понимание влияния различных факторов на досрочное отчисление студентов.

Исследование когнитивной функции при генерации эллиптических предложений в планиметрических задачах

Владимир Андреевич Пархоменко, Ксения Александровна Найденова, Татьяна Александровна Мартирова, Александр Валентинович Щукин
316-335
Аннотация:

Работа посвящена изучению когнитивной функции, связанной с генерацией эллиптических предложений в русском языке. Исследование проводилось на основе тестирования этой когнитивной способности с помощью компьютерной системы, специально разработанной авторами для этой цели. Тестирование этой когнитивной способности предложено и реализовано впервые. Система является расширением Moodle и открыто размещена в репозитории github. Эллиптические конструкции ограничиваются глагольными и именными эллипсисами, которые теоретически возможно полностью восстановить на основе контекста предложения. Исследование проводилось с участием в качестве респондентов студентов СПбПУ. В качестве предметной области были выбраны тексты планиметрических задач. В результате анализа данных тестирования получены следующие результаты: установлено влияние знаний респондента предметной области (планиметрии) на результаты тестирования; обнаружена тенденция к самообучению респондентов, что проявляется в сокращении времени и увеличении баллов по мере прохождения тестов; показано, что респонденты слабо мотивированы, если не видят отзыв на ответ по выполненному заданию.


Обсуждены проблемы дальнейшего развития системы тестирования и её применения при адаптации опросников (заданий) для оценки знаний студентов СПбПУ в области автоматизации обнаружения ошибок в программах, а также диагностики функционального состояния специалистов операторского профиля и экспресс-диагностики деменции. Перспективным представляется также применение системы для совершенствования процессов синтаксического разбора эллиптических предложений и автоматизации восстановления эллипсисов в предметной области планиметрии.

Система автоматизации численной оценки сходства Android-приложений

Валерий Владимирович Петров
336-365
Аннотация:

Работа посвящена проектированию и разработке системы автоматизации численной оценки сходства Android-приложений. Задача оценки сходства приложений сведена к оценке сходства множеств графов потока управления, построенных на основе кода из classes.dex файлов приложений. Значение сходства вычислено на основе матрицы сходства. Для сравнения графов потока управления использованы алгоритмы редактирования графов и расстояние Левенштейна. Сформулированы критерии сходства приложений и исследованы формы их представления. Представлены виды моделей Android-приложений и методы их построения. Разработан прототип системы автоматизации численной оценки сходства Android-приложений. С помощью инструментов параллельного программирования выполнена оптимизация программного решения. Проведены эксперименты и сделан вывод о способности разработанной системы выявлять сходства между Android-приложениями.

Классификация изображений с помощью сверточных нейронных сетей

Сергей Алексеевич Филиппов
366-382
Аннотация:

Для классификации изображений в настоящее время можно применить множество различных инструментов, каждый из которых направлен на решение определенного спектра задач. В статье проведен краткий обзор библиотек и технологий для классификации изображений. Построена архитектура простой свёрточной нейронной сети для классификации изображений.


Были проведены эксперименты по распознаванию изображений с такими популярными нейронными сетями, как VGG16 и ResNet 50. Обе нейронные сети показали хорошие результаты. Однако ResNet 50 переобучилась из-за того, что в наборе данных присутствовали однотипные изображения для обучения, поскольку в данной нейронной сети больше слоев, позволяющих считывать признаки объектов на изображениях. С обученными моделями был проведен сравнительный анализ по распознаванию изображений, специально подготовленных для этого эксперимента.


Для классификации изображений в настоящее время можно применить множество различных инструментов, каждый из которых направлен на решение определенного спектра задач. В статье проведен краткий обзор библиотек и технологий для классификации изображений. Построена архитектура простой свёрточной нейронной сети для классификации изображений.


Были проведены эксперименты по распознаванию изображений с такими популярными нейронными сетями, как VGG16 и ResNet 50. Обе нейронные сети показали хорошие результаты. Однако ResNet 50 переобучилась из-за того, что в наборе данных присутствовали однотипные изображения для обучения, поскольку в данной нейронной сети больше слоев, позволяющих считывать признаки объектов на изображениях. С обученными моделями был проведен сравнительный анализ по распознаванию изображений, специально подготовленных для этого эксперимента.

Многомерная геометрия на факультативных занятиях со школьниками и студентами младших курсов

Вадим Васильевич Шурыгин, Вадим Вадимович Шурыгин
383-412
Аннотация:

Рассмотрены некоторые подходы к преподаванию многомерной геометрии на факультативных занятиях, направленные на развитие у школьников и студентов многомерной геометрической интуиции. Особое внимание уделено использованию групп преобразований при исследовании геометрии правильных многогранников.