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Аннотация  

Рукописные архивные документы составляют фундаментальную часть куль-

турного наследия человечества, однако их анализ остается трудоемкой задачей 

для профессиональных исследователей-историков, филологов и лингвистов. В от-

личие от коммерческих приложений систем OCR (Optical Character Recognition, оп-

тического распознавания символов), работа с историческими рукописями требует 

принципиально иного подхода из-за чрезвычайного многообразия почерков, 

наличия правок и деградации материалов.  

Предложен метод поиска в рукописных текстах, основанный на штриховой 

сегментации. Вместо полного распознавания текста, часто недостижимого для ис-

торических документов, метод позволяет эффективно отвечать на поисковые за-

просы исследователей. Ключевая идея заключается в декомпозиции текста 

на элементарные штрихи, формировании семантических векторных представле-

ний с помощью контрастного обучения, последующей кластеризации и классифи-

кации для создания адаптивного словаря почерка. 

Экспериментально показано, что поиск сравнением кортежей редуциро-

ванных последовательностей наиболее информативных штрихов по расстоянию 

Левенштейна обеспечивает достаточное качество для рассматриваемой задачи. 

Метод демонстрирует устойчивость к индивидуальным особенностям почерка 

и вариациям написания, что особенно важно для работы с авторскими архивами 

и историческими документами. 
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Предложенный подход открывает новые возможности для ускорения науч-

ных исследований в гуманитарной сфере, позволяя сократить время поиска нуж-

ной информации с недель до минут, что качественно меняет возможности иссле-

довательской работы с большими архивами рукописных документов. 

Ключевые слова: рукописный текст, поиск, штриховый анализ, сегмен-

тация, векторное представление, контрастное обучение, кластеризация. 

ВВЕДЕНИЕ 

Автоматизированный поиск в рукописных документах – одна из ключевых за-

дач для исторических архивов. Однако традиционные OCR-системы демонстрируют 

низкую эффективность из-за нестандартности почерков, деградации носителей и 

сложной структуры рукописного текста [1, 2]. 

Перечислим существующие подходы и отметим их ограничения: оптическое 

распознавание символов (OCR) требует точного определения границ и форм симво-

лов, что трудно достижимо в рукописях [3]; поиск по визуальному сходству опери-

рует целыми фрагментами изображений, обладает высокой вычислительной слож-

ностью и плохо масштабируется [4]. 

В настоящей работе предложен штриховой подход, который преодолевает 

указанные ограничения. Его основная идея – это декомпозиция текста на элемен-

тарные графические единицы (штрихи) и последующий анализ их устойчивых 

комбинаций  

[5–7]. Это позволяет перейти от распознавания символов к выявлению структур-

ных паттернов, специфичных для почерка. 

Основные этапы метода: 

 Сегментация текста на элементарные штрихи и их предобработка. 

 Создание семантических эмбеддингов штрихов с помощью контрастного 

обучения. 

 Кластеризация полученных семантических эмбеддингов для выделения ос-

новных типов штрихов и формирования «словаря почерка». 

 Классификация штрихов документа, в котором будет проводиться поиск. 

 Поиск сравнением кортежей редуцированных последовательностей наибо-

лее информативных штрихов по расстоянию Левенштейна. 
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ФОРМАЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ 

Штрих 𝑠 задается ломаной линией из 𝑘 точек (𝑘 для каждого штриха разное) 

в декартовой системе координат:   

𝑠 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑘, 𝑦𝑘)}, (𝑥𝑚, 𝑦𝑚) ∈ 𝑅2. 

Текстовый запрос 𝑞text = 𝑐1𝑐2 … 𝑐𝐿 длины 𝐿 – это последовательность из 𝐿 симво-

лов алфавита Σ. Здесь Σ – алфавит символов, из которых составляются запросы 

(например, буквы русского алфавита). 

Имеется множество 𝐷 изображений из 𝑁 рукописных документов (фраг-

мент приведен на рис. 1), где каждый документ 𝐷𝑖 представлен как кортеж 𝑆𝑖 из 

𝑀𝑖 элементарных штрихов:  𝑆𝑖 = {𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑀𝑖
}. 

 

Рис. 1. Фрагмент изображения рукописного документа. 

Введем обозначения: 

●  𝐶 =∪𝑖=1
𝑁 𝑆𝑖 – все штрихи всех документов; 

● 𝑄𝑙 ⊆ 𝐶 – множество штрихов, соответствующих отдельному символу 𝑐𝑙 ∈

Σ; 

● 𝑃(𝐶) – множество всех подмножеств 𝐶. 

Тогда запрос 𝑞, получающийся из текстового запроса 𝑞text, представляет собой 

последовательность 𝑞 = (𝑄1, 𝑄2, … , 𝑄𝐿). 

Для текстового запроса 𝑞text необходимо найти такое отображение 

           𝐹: 𝐷 × ∏ 𝑃(𝐶)𝐿
𝑙=1 → 𝑃(𝐶), 

что 

∀𝐷𝑗 ∈ 𝐷 𝐹(𝐷𝑗 , 𝑞) = { 𝑠 ∈ 𝑆𝑗 ∣∣  𝑠 входит в 𝑄𝑙 }. 
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Таким образом, по множеству изображений рукописных документов и кор-

тежу штрихов, составляющих запрос, нужно найти кортежи штрихов в документах, 

относящиеся к поисковому запросу. 

ПРИНЦИП ПОИСКА И АЛГОРИТМ КЛАСТЕРИЗАЦИИ  

 Сегментация 

Первым шагом является преобразование исходного изображения доку-

мента в набор элементарных штрихов. Для алгоритма поиска неважен метод сег-

ментации. Мы применили подход [6], который анализирует топологию скелета 

текста. Метод выделяет связные компоненты, соответствующие отдельным дви-

жениям пера, и восстанавливает порядок их написания – выделяются элементар-

ные штрихи в виде упорядоченных ломаных линий. Метод основан на анализе 

топологии скелета текста и обеспечивает сохранение порядка написания штри-

хов, идентификацию связных компонент как цепочек или циклов. Традиционные 

методы OCR плохо работают с рукописным текстом из-за вариативности почер-

ков. Разбиение на штрихи позволяет перейти от распознавания целых символов 

к анализу их составляющих. 

Предобработка штрихов 

Полученные штрихи – это ломаные линии с переменным числом точек и 

различным расстоянием между ними. Поэтому выполняем аппроксимацию куби-

ческими сплайнами – каждый штрих заменяется гладкой параметрической кри-

вой, проходящей через все его точки. Это решает три проблемы: 

• устраняет ломаный характер линии – настоящие штрихи гладкие; 

• дает возможность получения гладкой линии после аугментации 

штриха – изменения координат составляющих его точек; 

• позволяет единообразно семплировать точки (например, 100 точек 

на штрих). 

Семплированные точки преобразуются в бинарные изображения 64×64. Это 

обусловлено входом выбранной архитектуры нейросети – ResNet [8]. Таким обра-

зом, предобработка позволяет превратить штрихи из ломаных в реальные сгла-

женные изображения следа пера (рис. 2). 
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Рис. 2. Преобразование штриха: исходная ломаная, сплайн и растеризованное 

изображение. 

Построение признакового описания штрихов 

Для построения эмбеддингов штрихов использована модифицированная 

архитектура ResNet-18. Одноканальный входной слой адаптирован для черно-бе-

лых изображений штрихов вместо стандартных RGB. Каждый блок содержит две 

свертки 3×3 с пакетной нормализацией и остаточным соединением, что предот-

вращает затухание градиентов в глубоких слоях. Два полносвязных слоя преобра-

зуют 512-мерные признаки в 128-мерные векторы, которые затем нормируются 

и проектируются на единичную сферу соответствующей головой. Это позволяет 

сравнивать штрихи через косинусное расстояние. Модель обучается отличать по-

хожие штрихи от непохожих с помощью контрастной функцией потерь NT-Xent 

Loss (Normalized Temperature-Scaled Cross Entropy). Для каждого штриха 𝑠 генери-

руются две аугментированные версии 𝑠𝑖 и 𝑠𝑗. Пример аугментации с добавлением 

шума и масштабированием показан на рис. 3. Их эмбеддинги 𝑣𝑖 и 𝑣𝑗 должны стать 

ближе в векторном пространстве, а эмбеддинги других штрихов – отдалиться. 
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Рис. 3. Аугментация штриха: исходный штрих, зашумленные точки, сплайн 

аугментированного штриха. 

Для батча из 𝑁 штрихов с двумя аугментациями каждый (всего 2𝑁 эм-

беддингов) функция потерь для 𝑖-го штриха вычисляется как 

𝐿𝑖 = −log

exp (
𝑣𝑖

⊤𝑣𝑗

𝜏 )

∑ 1𝑘≠𝑖
2𝑁
𝑘=1 exp (

𝑣𝑖
⊤𝑣𝑘

𝜏 )

, 

где 𝑣𝑖
⊤𝑣𝑗 – косинусное сходство, 𝜏 (температура) – гиперпараметр, управляющий 

«резкостью» распределения (чем меньше 𝜏, тем выше штраф за трудные негатив-

ные примеры), 1𝑘≠𝑖 – индикатор, исключающий сравнение эмбеддинга с самим 

собой. 

Матрица сходств 𝑉⊤𝑉 строится для всех 2𝑁 векторов. Диагональные эле-

менты (сравнение с собой) исключаются маской. Минимизация 𝐿 сближает эм-

беддинги аугментаций одного штриха и разводит разные штрихи. Если 𝑣𝑖 и 𝑣𝑗 – 

аугментации одного штриха, а 𝑣𝑘 – другого, то 

exp(𝑣𝑖
⊤𝑣𝑗) ≫ exp(𝑣𝑖

⊤𝑣𝑘) ⟹ 𝐿𝑖 → 0. 

Сверточные сети эффективно ищут локальные геометрические паттерны, 

а остаточные связи позволяют обучать глубокие модели без переобучения. Это 

критично для работы с мелкими деталями штрихов. Принцип работы контраст-

ного обучения проиллюстрирован на рис. 4 (двумерное пространство эмбеддин-
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гов для наглядности): похожие штрихи (A и B) сближаются в эмбеддинг-простран-

стве, непохожий штрих (C) отдаляется от них, расстояние определяется косинус-

ной мерой между векторами. 

 

Рис. 4. Принцип контрастного обучения: похожие штрихи А и В;  

отличающийся штрих С. 

Кластеризация и формирование словаря 

После преобразования всего архива документов в эмбеддинги штрихов 

(всего 𝑀 штрихов) 𝑉 = {𝑣𝑖}𝑖=1
𝑀 ⊂ 𝑅128 осуществляется группировка семантически 

близких элементов с помощью алгоритма DBSCAN [9]. Этот метод был выбран из-

за его способность и обнаруживать кластеры произвольной формы и идентифи-

цировать выбросы (шум), что соответствует природе рукописных данных, где 

один и тот же штрих может иметь вариации. Метод основан на критерии плотно-

сти распределения точек в пространстве признаков: кластер формируется как 

максимальное множество точек, где каждая точка имеет не менее minPts сосе-

дей в 𝜖-окрестности. Формально это свойство задается условиями 

𝑁𝜖(𝑣𝑖) = {𝑣𝑗 ∈ 𝑉| ∥ 𝑣𝑖 − 𝑣𝑗 ∥2≤ 𝜖}, |𝑁𝜖(𝑣𝑖)| ≥ minPts. 
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Для каждого кластера 𝐶𝑘 вычисляется эталонный вектор 𝜇𝑘 =
1

|𝐶𝑘|
∑ 𝑣𝑣∈𝐶𝑘

, 

играющий роль «цифрового прототипа» каллиграфического элемента. Множе-

ство центроидов 𝑀 = {𝜇𝑘}𝑘=1
𝐾  образует базовый словарь системы. Поиск по за-

просу 𝑞 изначально сводится к решению задачи многокритериальной оптимиза-

ции в пространстве эталонов. Сначала каждый символ 𝑐𝑖 преобразуется в эм-

беддинг 𝑒𝑖 (или их комбинацию) через нейросетевую модель, после чего осу-

ществляется поиск ближайших центроидов: 

𝜇𝑖
∗ = arg min

𝜇𝑘∈𝑀
(1 −

𝑒𝑖 𝜇𝑘

∥𝑒𝑖∥∥𝜇𝑘∥
) ,  𝑖 = 1, . . .,. 

На рис.  5b показано, как разные реализации одного штриха (синие, зеле-

ные, серые, коричневые точки) группируются вокруг общего центра, а рис. 5c де-

монстрирует механизм поиска через сопоставление с ближайшими эталонами. 

 

Рис. 5. Визуализация процесса кластеризации: (a) исходное распределение 

эмбеддингов; (b) выделенные кластеры с центрами (черные кресты); (c) поиск 

по запросу (красная звезда). 

ЭКСПЕРИМЕНТЫ 

 Обучение модели и настройка кластеризации 

Прежде чем перейти к поиску, необходимо убедиться в качестве векторных 

представлений и адекватности словаря. 

Процесс обучения нейросетевой модели проводился на выборке из 10000 

штрихов, полученных из рукописных конспектов. Каждый штрих предварительно 
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обрабатывался по схеме: сегментация → сплайновая аппроксимация → растери-

зация в изображение 64 × 64. Для аугментации применялись гауссово зашумле-

ние с 𝜎 = 1 и масштабирование в диапазоне 𝛼 ∈ [0,9;  1,1]. 

Архитектура ResNet-18 обучалась с контрастной функцией потерь NT-Xent: 

𝐿 = −
1

2𝑁
∑ log

exp(
𝑣𝑖

⊤𝑣𝑗

𝜏
)

∑ exp(
𝑣𝑖

⊤𝑣𝑘
𝜏

)𝑘≠𝑖

2𝑁
𝑖=1 , 

где температура 𝜏 = 0.5 использована для калибровки шкалы сходств, а косинус-

ная мера вычислялась между аугментированными парами. Оптимизация выпол-

нялась алгоритмом Adam с параметром learning rate = 3 ⋅ 10−4. Размер батча со-

ставлял 64 примера, каждый из которых содержал две аугментированные версии 

штриха. Обучение продолжалось 100 эпох с уменьшением потерь от 3.3576 до 

3.0479, демонстрируя устойчивую сходимость модели (рис. 6). Характерные коле-

бания потерь (например, локальный максимум 3,0865 на 50-й эпохе при общем 

тренде снижения) типичны для контрастных методов обучения. Общее время 

обучения составило 16 мин. на GPU NVIDIA A100. 

 

Рис. 6. Динамика функции потерь на обучении. 
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Для формирования базового словаря элементарных штрихов был проведен 

анализ зависимости числа кластеров 𝐾 от параметра 𝜖 в алгоритме DBSCAN. Гра-

фик 𝐾(𝜖) (рис. 7) демонстрирует три следующих характерных режима. 

Область малых значений 𝝐 ∈ [0.7;  0.78). Алгоритм выделяет крупные кла-

стеры, объединяя семантически различные штрихи. Например, при 𝜖 = 0.7 все 

штрихи группируются всего в два кластера, что явно недостаточно для описания 

почерка. 

Оптимальный диапазон 𝝐 ∈ [0.78;  0.94]. Рост 𝐾(𝜖) отражает обнаружение 

устойчивых структур. Каждый новый кластер соответствует уникальному типу 

штриха, удовлетворяющему условию: 

|𝑁𝜖(𝑣)| ≥ 6 для 𝑣 ∈ 𝐶, 

где 𝑁𝜖(𝑣) – соседи точки 𝑣 в 𝜖-окрестности. При 𝜖 ∈ [0.9;  0.94] достигается мак-

симум 𝐾 = 10, что соответствует набору элементарных компонент почерка. 

Область больших значений 𝝐 > 0.94. Основная причина снижения 𝐾 при 

𝜖 > 0.94 – это нарушение условия минимальной плотности. Согласно алгоритму 

DBSCAN кластером считается группа точек, где каждая точка имеет менее чем 

minPts соседей в 𝜖-окрестности и все точки кластера достижимы через цепочку 𝜖-

соседей. 

 

Рис. 7. График зависимости числа кластеров от 𝜖. Пунктирной линией 

обозначено оптимальное значение параметра. 
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При увеличении 𝜖 происходит потеря связности – группы распадаются на 

подкластеры с менее чем minPts элементами. Например, рассмотрим кластер 

𝐶 = {𝑣1, . . . , 𝑣5} из 5 точек при 𝜖 = 0.96. Несмотря на выполнение условия связно-

сти, 

∃𝑣𝑖 ∈ 𝐶: |𝑁0.96(𝑣𝑖)| = 4 < 6. 

Согласно правилам DBSCAN весь кластер 𝐶 классифицируется как шум. 

Оптимальное значение 𝜖∗ = 0.92 выбрано как точка, где достигается насы-

щение – дальнейшее увеличение 𝜖 не дает новых кластеров (𝐾(𝜖) = 10 при 𝜖 ≥

0.92); сохраняется устойчивость: не менее 85% штрихов остаются в тех же класте-

рах при 𝜖 ± 0.02. 

Сформированный словарь (см. рис. 8) содержит все необходимые эле-

менты для декомпозиции рукописных символов. Таким образом, предложенная 

методика позволяет автоматически выделять структурные элементы почерка, 

обеспечивая баланс между детализацией и устойчивостью представления. 

 

Рис. 8. Базовый словарь из 10 элементарных штрихов. 
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 Модифицированный поиск по кортежам штрихов 

Сформированный словарь позволяет искать слова, сопоставляя последова-

тельности штрихов. Однако полная последовательность может быть избыточной 

и чувствительной к шуму. 

В проведенном эксперименте была исследована возможность поиска руко-

писных слов с использованием редуцированных последовательностей штрихов. 

Основная гипотеза заключается в том, что для каждого текстового запроса суще-

ствует оптимальная подпоследовательность штрихов, позволяющая обеспечить 

поиск при снижении влияния шума менее информативных штрихов. Штрихи, со-

ставляющие эти подпоследовательности, назовем главными. Обозначим эти под-

множества размера 𝑘 через 𝑇core
(𝑘)

. 

Для каждого типа штриха 𝑡𝑖 (после отнесения к кластеру) вычислим дискри-

минативную силу на основе TF-IDF: 

𝐷𝑆(𝑡𝑖) = 𝑇𝐹(𝑡𝑖 , 𝑞) × 𝐼𝐷𝐹(𝑡𝑖), 

где 

• 𝑁 – общее количество штрихов в запросе, 

• 𝑛𝑖 – количество вхождений штриха 𝑡𝑖 в запрос, 

• 𝑇𝐹(𝑡𝑖 , 𝑞) = 𝑛𝑖/𝑁 – относительная частота штриха 𝑡𝑖 в запросе 𝑞, 

• |𝐷| – общее количество строк во множестве документов, 

• |{𝑑 ∈ 𝐷: 𝑡𝑖 ∈ 𝑑}| – количество строк, содержащих штрих 𝑡𝑖, 

• 𝐼𝐷𝐹(𝑡𝑖) = log
|𝐷|

|{𝑑∈𝐷:𝑡𝑖∈𝑑}|
 . 

Для запроса 𝑞 и документа 𝑑 построим редуцированные последовательно-

сти штрихов: 

𝑞core
(𝑘)

= {𝑡 ∈ 𝑞: 𝑡 ∈ 𝑇core
(𝑘)

} , 𝑑core
(𝑘)

= {𝑡 ∈ 𝑑: 𝑡 ∈ 𝑇core
(𝑘)

}. 

Решение о наличии слова в документе примем на основе порогового значе-

ния нормализованного расстояния Левенштейна: 

match = {1, если 
Lev(𝑞core, 𝑑core)

max(|𝑞core|, |𝑑core|)
≤ 𝜃;  0 –  иначе},  

где 𝜃 – пороговое значение. Размер окна выберем, исходя из длины оригиналь-

ной (нередуцированной) последовательности штрихов. 
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Для эксперимента были выбраны слова различной длины и частоты встре-

чаемости в тестовом документе объемом 15267 штрихов. Процедура экспери-

мента включала последовательное добавление штрихов в поисковый шаблон 

в порядке убывания дискриминативной силы и вычисление показателей качества 

для каждого 𝑘. 

Эксперимент показал, что для всех тестовых слов существует оптимальное 

подмножество штрихов, обеспечивающее показательное по полноте (Recall) ка-

чество поиска при редукции признакового пространства (см. табл. 1). 

Табл. 1. Оптимальное 𝑘 и оценки качества. 

Слово Оптимальное 𝑘 

(количество  

штрихов) 

Точность 

(Precision) 

Полнота 

(Recall ) 

«конъюнкция» 6 0.56 0.75 

«доказательство» 7 0.6 0.67 

«следовательно» 7 0.67 0.83 

«теорема» 5 0.45 0.8 

 

Наблюдались характерный рост эффективности с добавлением наиболее 

информативных штрихов и последующее насыщение после достижения опти-

мального подмножества, что свидетельствует о наличии небольшого набора вы-

сокоинформативных признаков. 

Предложенный метод продемонстрировал несколько ключевых преиму-

ществ. Вычислительная эффективность достигается за счет редукции признако-

вого пространства, что особенно важно при работе с крупными архивами руко-

писных документов. Адаптивность метода позволяет автоматически определять 

оптимальное подмножество штрихов для каждого слова на основе объективных 

метрик, без необходимости ручной настройки. Устойчивость к вариациям по-

черка обеспечивается за счет использования главных штрихов, которые, как пра-
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вило, остаются стабильными при различных стилях написания. Снижается чув-

ствительность к «лишним штрихам», вносящим шум. Это свойство особенно 

ценно при работе с историческими документами, где часто встречаются индиви-

дуальные особенности почерка. 

Практическая значимость метода состоит в возможности создания эффек-

тивных систем поиска для крупных архивов рукописных текстов. Сокращение вы-

числительной сложности позволяет масштабировать систему для работы с кол-

лекциями, содержащими миллионы штрихов, что открывает новые возможности 

для цифровой археографии и исторических исследований. 

Следует отметить, что метод имеет определенные ограничения. Качество 

поиска зависит от точности сегментации текста на элементарные штрихи, которая 

может оказаться низкой для документов плохого качества или со сложной струк-

турой. Кроме того, для новых слов требуется предварительный анализ дискрими-

нативной силы штрихов, что добавляет этап обучения в рабочий процесс. 

ЗАКЛЮЧЕНИЕ 

Предложен и экспериментально обоснован штриховой подход к поиску в 

рукописных документах. Ключевым достижением является создание полноцен-

ной системы, которая: 

● автоматически сегментирует текст на элементарные штрихи; 

● строит их семантические эмбеддинги с помощью контрастного обуче-

ния; 

● формирует адаптивный словарь типичных штрихов методами кластери-

зации без учителя; 

● реализует механизм поиска, основанный на классификации штрихов и 

анализе редуцированных последовательностей классов штрихов. 

Показана возможность редукции признакового пространства (штрихов) для 

достижения приемлемой точности поиска, что открывает пути к созданию более 

быстрых и эффективных алгоритмов. Универсальность алгоритма (независимость 

от языка и типа документа) расширяет область его применения. 

Перспективы дальнейших исследований включают разработку адаптивных 

алгоритмов автоматического определения оптимального размера подмножества 

штрихов, интеграцию контекстной информации для улучшения точности поиска, 
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а также применение методов глубокого обучения для более точной оценки дис-

криминативной силы штрихов. 
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Abstract 

Handwritten archival documents form a fundamental part of humanity's cultural 

heritage. However, their analysis remains a labor-intensive task for professional re-

searchers, such as historians, philologists, and linguists. Unlike commercial OCR appli-

cations, working with historical manuscripts requires a fundamentally different ap-

proach due to the extreme diversity of handwriting, the presence of corrections, and 

material degradation. 

This paper proposes a method for searching within handwritten texts based on 

stroke segmentation. Instead of performing full text recognition, which is often unat-

tainable for historical documents, this method allows for efficiently answering re-

searcher search queries. The key idea involves decomposing the text into elementary 

strokes, forming semantic vector representations using contrastive learning, followed 

by clustering and classification to create an adaptive handwriting dictionary. 
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It is experimentally shown that search by comparing tuples of reduced se-

quences of the most informative strokes using the Levenshtein distance provides suf-

ficient quality for the task at hand. The method demonstrates resilience to individual 

handwriting characteristics and writing variations, which is particularly important for 

working with authors' archives and historical documents. 

The proposed approach opens up new possibilities for accelerating scientific re-

search in the humanities, reducing the time required to find relevant information from 

weeks to minutes, thereby qualitatively transforming research capabilities when work-

ing with large archives of handwritten documents. 

Keywords: handwritten text, search, stroke analysis, segmentation, vector rep-

resentation, contrastive learning, clustering. 
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