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Аннотация  

Представлены результаты экспериментального исследования эффективно-

сти использования сверхслучайных деревьев в моделях, основанных на градиент-

ном бустинге, а также в новом ансамблевом методе, в котором лес генерируется, 

исходя из условия повышенной внутренней дивергенции. сследована эффектив-

ность сверхслучайных деревьев при использовании расширенных наборов при-

знаков с включением новых признаков, вычисляемых как расстояния Идо набора 

описаний опорных объектов из обучающей выборки. Показано, что использова-

ние сверхслучайных деревьев в моделях градиентного бустинга и дивергентного 

леса позволяет улучшить обобщающую способность, а также, что к еще большему 

росту обобщающей способности приводит использование расширенных наборов 

признаков. 
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метрическое пространство, метод сверхслучайных деревьев. 

ВВЕДЕНИЕ 

Ансамблевые методы, основанные на использовании комбинаций более 

простых алгоритмов, получили широкое распространение при решении разнооб-

разных прикладных задач прогнозирования числовых целевых переменных. Вы-

сокая эффективность ансамблевых методов, убедительно подтверждаемая ре-

зультатами многочисленных экспериментов, делает актуальными дальнейшие 
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исследования по их совершенствованию. Методы ансамблевого обучения осно-

ваны на вычислении коллективного прогноза по набору прогнозов, вычисляемых 

базовыми алгоритмами, вошедшими в ансамбль, что позволяет повысить устой-

чивость и точность предсказаний. Формально предсказание ансамбля можно за-

писать в виде 

𝑎(𝑥) = 𝑚(𝑏1(𝑥), . . . , 𝑏𝑛(𝑥)), 

где 𝑏𝑖(𝑥) , 𝑖 = 1, . . . , 𝑛 , – предсказания отдельных базовых моделей, а 𝑚(𝑥) – 

мета-алгоритм, агрегирующий эти предсказания. 

 Построение ансамбля состоит из двух этапов: во-первых, обучение несколь-

ких базовых моделей; во-вторых, применение стратегии объединения их выходов 

для получения финального результата. Однако ансамблевые методы обычно ис-

пользуют фиксированные способы объединения моделей. Теоретическое обос-

нование целесообразности использования ансамблей восходит к теореме Кон-

дорсе о присяжных [1]. В соответствии с этой теоремой, если каждый голосующий 

высказывает независимое мнение и в среднем принимает верное решение чаще, 

чем ошибается, то вероятность правильного вердикта большинства стремится 

к единице по мере увеличения числа голосующих.  

Ансамблевые методы имеют длительную историю. Одними из первых ан-

самблевых методов были тестовый алгоритм [2] и алгоритм Кора [3], предложен-

ные еще в 1960-е годы. Идея использования ансамблей решающих и регрессион-

ных деревьев возникла в 1993 г. (см. в [4]). В 2001 г. окончательно оформилась 

идея случайного леса [5], в котором ансамбль регрессионных или решающих де-

ревьев генерируется с использованием метода бэггинга (bagging, [6]) и метода 

случайных подпространств [7]. В методе бэггинга деревья обучаются по выбор-

кам, которые являются выборками с возвращением из исходной обучающей вы-

борки. В методе случайных подпространств обучение производится по выборкам, 

получаемым из исходной выборки с помощью случайного выбора подмножества 

признаков. Необходимо отметить, что при построении случайного леса каждое 

новое дерево строится независимо от предыдущих деревьев, исходя из условия 

наилучшей аппроксимации исходной целевой переменной. 

В отличие от случайного леса, метод бустинга (boosting, [8–11]) направлен 

на построение линейной комбинации «слабых» алгоритмов. На каждом шаге 
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в нее добавляется новое слагаемое согласно условию минимизации ошибки ли-

нейной комбинации. Одним из первых представителей данного подхода является 

алгоритм AdaBoost [12], в котором при обучении используются веса объектов обу-

чающей выборки. На первом шаге веса объектов выбираются равными. На после-

дующих шагах увеличиваются веса объектов, предсказания для которых были 

ошибочными. Более широкое распространение по сравнению с AdaBoost в по-

следнее время получил градиентный бустинг, в котором минимизация потерь на 

каждом шаге производится с использованием градиентного спуска, а каждое но-

вое дерево, добавляемое в линейную комбинацию, аппроксимирует антигради-

ент функции потерь. Подобные методы демонстрируют очевидные преимуще-

ства при моделировании сложных нелинейных зависимостей. 

С развитием алгоритмов и вычислительных ресурсов современные методы 

градиентного бустинга были значительно усовершенствованы с точки зрения про-

изводительности и эффективности. Широкое распространение получили модифи-

кации градиентного бустинга: XGBoost [13], LightGBM [14] и CatBoost [15]. В [16–

18] предложен новый вариант регрессионного леса, основанный на анализе раз-

ложения квадратичной ошибки выпуклых комбинаций предикторов. Из разложе-

ния следует, что ошибка может быть значительно снижена при увеличении вза-

имного квадратичного отклонения прогнозов алгоритмов, входящих в ансамбль. 

В связи с этим было предложено при построении нового дерева, включаемого 

в ансамбль, не только минимизировать квадратичную ошибку прогноза, но и од-

новременно максимизировать квадратичное отклонение от текущего ансамбля. 

Эксперименты показали, что такой подход, который носит название дивергент-

ного леса [18], во многих случаях позволяет снижать ошибку ансамбля.  

В современных вариантах алгоритмов случайного регрессионного леса и 

различных вариантов градиентного бустинга обычно используются регрессион-

ные деревья, в которых пороги для признаков выбираются по критериям мини-

мизации ошибки прогноза. В последнее время растет интерес к так называемым 

сверхслучайным деревьям (Extra Randomized Trees [19]), в которых пороговые 

значения для признаков выбираются случайно. Эксперименты показали [19], что 

нередко леса, состоящие из сверхслучайных деревьев, превосходят по обобщаю-
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щей способности стандартные регрессионные случайные леса, требуя значи-

тельно меньше времени на обучение. В связи с этим возникла идея исследовать 

эффективность использования сверхслучайных деревьев также в градиентном бу-

стинге и дивергентном лесе.  

Другим способом повышения обобщающей способности является транс-

формация признакового пространства [20]. Поэтому еще одной целью настоящей 

работы стало исследование эффективности ансамблевых методов с использова-

нием в качестве признаков расстояний до опорных векторных описаний объектов 

из обучающей выборки. Обучающая выборка состоит из 𝑛 объектов, каждый из 

которых описывается 𝑚 признаками: 𝑥𝑖=(𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑚) ∈ 𝑅𝑚 и включает соот-

ветствующее целевое значение 𝑦𝑖 ∈ 𝑅. Тогда обучающая выборка записывается 

как 𝑆 = {(𝑥𝑖  , 𝑦𝑖)}, 𝑖 = 1, . . . , 𝑛. 

МЕТОДОЛОГИЯ 

Опишем методологию исследования, включая характеристики набора дан-

ных, общую структуру ансамблевых моделей и принципы их построения. 

Описание данных 

В проведенном исследовании был использован набор данных, содержа-

щий физико-химические характеристики различных химических соединений и со-

ответствующие значения их температуры плавления. Каждый образец (соедине-

ние) описан множеством числовых признаков, соответствующих свойствам струк-

туры, энергии и состава вещества. Целевой переменной является температура 

плавления соединения 𝑇𝑚, измеряемая в кельвинах (𝐾). 

Данные представлены в табличной форме: 

− первая колонка содержит наименование соединения (Compound); 

− во второй указано значение целевой переменной 𝑇𝑚; 

− остальные столбцы соответствуют числовым признакам, всего пред-

ставлено 𝑚 характеристик; 

− полный набор данных включает n наблюдений. 

Перед началом обучения данные были разделены на обучающую и тесто-

вую выборки в соотношении 80/20 для последующего обучения и проверки мо-

дели. 
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Используемые модели 

Перед описанием предлагаемых ансамблей рассмотрим базовый алго-

ритм, на основе которого они построены, – метод сверхслучайных деревьев. 

Краткое сравнение сверхслучайного дерева и стандартного регрессионного 

дерева приведено в табл. 1. 

Метод снижает вычислительные затраты на построение модели и повы-

шает разнообразие деревьев по сравнению с классическим методом [21], что спо-

собствует лучшей обобщающей способности ансамбля и снижает риск переобу-

чения.  

Табл. 1. Сравнение ансамблей на основе моделей сверхслучайного дерева 

и стандартного регрессионного дерева (Regression Tree). 

Критерий сравнения Сверхслучайное дерево Регрессионное  

дерево 

Выбор точки разделе-

ния 

Случайная точка разделения 

(random split) 

Лучшая точка разде-

ления (best split) 

Скорость обучения Быстрее (нет поиска, выбира-

ется случайно) 

Медленнее (нужно 

искать оптимальное 

разделение) 

Смещение/дисперсия Более высокое смещение, низ-

кая дисперсия → устойчивость 

Низкое смещение, вы-

сокая дисперсия → 

переобучение 

 

В качестве модели регрессии 𝐴 мы реализовали два ансамблевых подхода 

на основе метода сверхслучайных деревьев, в которых одиночное дерево исполь-

зуется в качестве базового алгоритма, добавляемого в ансамбль на каждой ите-

рации: 

● градиентный бустинг с аппроксимацией на каждом шаге градиента 

функции потерь; 

● дивергентный лес с итеративным обновлением целевой переменной. 
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Градиентный бустинг 

Градиентный бустинг формирует итоговую модель поэтапно, последова-

тельно добавляя новые базовые алгоритмы, каждый из которых нацелен на 

устранение ошибок предыдущих шагов. В отличие от случайного леса, где дере-

вья строятся независимо, бустинг организует обучение в последовательной 

форме, направляя внимание на трудные для предсказания наблюдения. 

Пусть задана функция потерь 𝐿(𝑦, 𝐹(𝑥)), измеряющая расхождение между 

истинным значением 𝑦 и предсказанием модели 𝐹(𝑥). 

На каждом шаге бустинг добавляет новую базовую модель ℎ𝑘(𝑥), которая 

аппроксимирует направление наискорейшего спуска функции потерь – отрица-

тельный градиент. 

Алгоритм градиентного бустинга: 

● Инициализация 

𝐹₀(𝑥) = argmin
𝑐

∑ 𝐿(𝑦ᵢ, 𝑐)

𝑛

𝑖=1

. 

● Для каждой итерации 𝑘 = 1,2, . . . , 𝐾: 

– вычисляются антиградиенты 

𝑟𝑖
(𝑘)

=
−𝜕𝐿 (𝑦𝑗 , 𝐹𝑘−1(𝑥ᵢ))

𝜕𝐹𝑘−1(𝑥ᵢ)
; 

– обучается базовая модель ℎ𝑘(𝑥) по парам (𝑟𝑖
(𝑘)

, 𝑥𝑖); 

– обновляется ансамбль: 

𝐹𝑘(𝑥) = 𝐹𝑘−1(𝑥) + 𝜂 ⋅ ℎ𝑘(𝑥), где 𝜂 ∈(0,1] – шаг обучения (learning rate). 

Если функция потерь имеет вид 

𝐿(𝑦, 𝐹) =
1

2
(𝑦 − 𝐹)²,   

то отрицательный градиент совпадает с обычным остатком: 

𝑟𝑖
(𝑘)

= 𝑦𝑖 − 𝐹𝑘−1(𝑥). 

Следовательно, на каждом шаге базовая модель ℎ𝑘(𝑥) обучается на остат-

ках предыдущего шага. 

В рамках настоящего исследования градиентный бустинг был реализован с 

использованием сверхслучайных деревьев в качестве базовых моделей. В реали-

зации для текущей задачи процесс обучения выглядит следующим образом. 
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 На первом шаге вычисляются остатки 𝑟𝑖
(1)

= 𝑦𝑖 − 𝑌, где 𝑌 – среднее 

значение 𝑌  на обучающей выборке. 

● Строится сверхслучайное дерево 𝑇1 по парам (𝑋train, 𝑟train
(1)

). 

●  Предсказание вычисляется по формуле 

   𝐹1(𝑋train) = 𝑌 + 𝜂𝑇1(𝑋train).  

● На шаге 𝑘 вычисляются остатки 

𝑟𝑖
(𝑘)

= 𝑦𝑖 − 𝐹𝑘−1(𝑥𝑖). 

● Строится сверхслучайное дерево 𝑇𝑘 по парам (𝑋train, 𝑟
train
(𝑘)

). 

● Предсказания обновляются по правилу 

𝐹𝑘(𝑋train) = 𝐹𝑘−1(𝑋train) + 𝜂 ⋅ 𝑇𝑘(𝑋train). 

Дивергентный лес  

В отличие от градиентного бустинга, который минимизирует функцию по-

терь на каждом шаге, метод дивергентного леса [17, 18] использует альтернатив-

ную схему обновления целевой переменной. 

Разработанная нами модификация дивергентного леса представляет собой 

ансамблевый алгоритм, построенный на основе сверхслучайных деревьев. Ос-

новная идея метода заключается в итеративном изменении целевых перемен-

ных, что способствует увеличению разнообразия базовых моделей и улучшению 

общей точности предсказаний, такой подход объединяет концепции последова-

тельного обучения, присущего бустингу, и стохастического характера сверхслу-

чайных деревьев. 

Каждая итерация ансамбля использует не исходные метки, а адаптирован-

ную целевую переменную 𝑆train
(𝑘)

, скорректированную с учетом накопленных пред-

сказаний. Это позволяет каждой новой модели обучаться на обновленных дан-

ных, что обеспечивает более устойчивое и сбалансированное поведение ансам-

бля. 

Алгоритм метода можно представить следующим образом. 

● Инициализация 

𝑍train
(0)

= 𝑌train. 

● Для каждой итерации 𝑘:  
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– обучается сверхслучайное дерево 𝑇𝑘 на текущем векторе 𝑍train
(𝑘−1)

; 

– вычисляется предсказание  𝑃𝑘 = 𝑇𝑘(𝑋train); 

– обновляется целевая переменная 

𝑃𝑘 =
1

𝑘
∑ 𝑃𝑗

𝑘
𝑗=1 ,     𝑍train

(𝑘−1)
=

𝑌train−𝜇𝑃̅𝑘

1−𝜇
;  

 где 𝜇 ∈ (0,1) – параметр, регулирующий баланс между диверген-

цией и точностью аппроксимации. 

● Финальное предсказание при количестве итераций r вычисляется по 

формуле  
1

r
∑ 𝑃𝑗

r
𝑗=1 . 

Предложенный подход отличается от традиционного бустинга тем, что вме-

сто оптимизации градиента ошибки применяется явное аналитическое обновле-

ние, основанное на сглаженном ансамбле предсказаний. Такой механизм позво-

ляет контролировать вклад новых и предыдущих моделей посредством пара-

метра 𝜇, снижая чувствительность к шуму и нестабильности меток. 

Таким образом, дивергентный лес можно рассматривать как обобщенную 

версию бустинга, ориентированную на повышение устойчивости и стабильности 

ансамбля при работе с реальными, зашумленными данными. 

Метод опорных точек и расстояние Махаланобиса 

Одним из важных элементов представленного подхода является использо-

вание метода опорных точек для построения нового метрического пространства. 

Основная идея состоит в том, чтобы расширить исходное пространство признаков 

новыми координатами, которые отражают расстояния от каждого объекта до спе-

циально выбранных репрезентативных (опорных) точек. Предполагается, что та-

кое преобразование позволит точнее выделить структурные связи в данных и об-

легчит поиск скрытых закономерностей, которые не всегда хорошо улавливаются 

моделью регрессионных деревьев в исходных координатах при коррелирован-

ных признаках. 

Пусть имеется обучающая выборка из n объектов, каждый из которых опи-

сывается m признаками. Введем множество из k опорных точек – базовых эле-

ментов, относительно которых будет формироваться новое пространство призна-

ков. Эти точки можно рассматривать как «ориентиры», позволяющие измерять 

степень близости других объектов к сложным областям исходного пространства. 
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Для отбора опорных точек используем предварительно обученную модель 

𝐴0. После обучения для каждого объекта вычислим ошибку предсказания  

𝑒𝑖 = (𝐴0(𝑥) − 𝑦𝑖)2.   

В качестве опорных выберем объекты, у которых значение ошибки 

наибольшее. Интуитивно ясно, что это те наблюдения, которые труднее всего ап-

проксимировать базовой моделью. Если использовать их как эталоны, то можно 

улучшить способность модели учитывать сложные или слабо представленные об-

ласти пространства признаков. Такой принцип близок идее адаптивного бустинга, 

где внимание последующих моделей сосредоточено на наблюдениях, для кото-

рых предыдущие модели допускают наибольшую ошибку. Для каждого объекта 

𝑥𝑖 построим новый вектор признаков 𝑧𝑖, компоненты которого представляют со-

бой расстояния до всех выбранных опорных точек:  

𝑧𝑖 =(𝜌(𝑥𝑖, 𝑥1), 𝜌(𝑥𝑖, 𝑥2),..., 𝜌(𝑥𝑖 , 𝑥𝑘))). 

В результате получим новое расширенное описание как конкатенацию векторов 

𝑥𝑖 и 𝑧𝑖, которое далее обозначим как [𝑥𝑖, 𝑧𝑖]. 

В качестве меры расстояния используется расстояние Махаланобиса [22], 

определяемое формулой  

𝜌𝑀(𝑥𝑖 , 𝑥𝑘)= √∑ ∑ (𝑥𝑖𝑝 − 𝑥𝑘𝑝)𝑚
𝑞=1

𝑚
𝑝=1 𝛴𝑝𝑞

−1
(𝑥𝑖𝑞 − 𝑥𝑘𝑞), 

где Σ – ковариационная матрица. 

В отличие от евклидовой метрики, расстояние Махаланобиса учитывает 

масштаб признаков и их взаимную корреляцию. Это особенно важно, когда при-

знаки сильно различаются по дисперсии или связаны между собой. В таких слу-

чаях евклидово расстояние может искажать реальную структуру данных, тогда как 

расстояние Махаланобиса дает более корректную оценку близости. 

После добавления новых координат преобразуем исходную выборку: 

𝑆′ ={([𝑥𝑖 , 𝑧𝑖], 𝑦𝑖)}, 𝑖 = 1, . . . , 𝑛. Затем обучим новую модель 𝐴[𝑥𝑖 , 𝑧𝑖]≈ 𝑦𝑖. 

Построение признаков на основе расстояний до опорных точек делает мо-

дель более гибкой и чувствительной к структуре данных. Метод особенно поле-

зен при наличии значительной корреляции признаков, а также при сложной 
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форме распределения данных. Тем не менее чрезмерное увеличение числа но-

вых признаков может привести к переобучению, поэтому количество опорных то-

чек k следует подбирать эмпирически. 

В ходе экспериментов было показано, что использование расширенного 

пространства признаков на основе расстояния Махаланобиса дает более устойчи-

вые результаты по сравнению с другими метриками. Причина заключается в том, 

что эта метрика устраняет два эффекта: 

● масштабный эффект: признаки с высокой дисперсией не доминируют 

над остальными; 

● корреляционный эффект: сильно зависимые признаки не учитыва-

ются дважды. 

ПРОВЕДЕННЫЕ ЭКСПЕРИМЕНТЫ 

Основная цель экспериментов заключалась в проверке эффективности 

предложенного подхода. Эксперименты были направлены на сравнение точности 

и устойчивости различных ансамблевых моделей в задаче регрессии. 

Сравниваемые модели 

В ходе экспериментов были рассмотрены следующие методы регрессии. 

● Случайный лес, построенный с использованием сверхслучайных де-

ревьев в качестве базового алгоритма (ET in RF). 

● Дивергентный лес, построенный с использованием стандартных ре-

грессионных деревьев в качестве базового алгоритма (RT in DF). 

● Дивергентный лес, построенный с использованием сверхслучайных 

деревьев в качестве базового алгоритма (ET in DF). 

● Дивергентный лес, построенный с использованием расширенного 

описания и сверхслучайных деревьев в качестве базового алгоритма (ET in 

DF (расш.)). 

● Классический градиентный бустинг на деревьях решений (GBRT). 

● Градиентный бустинг с использованием сверхслучайных деревьев 

в качестве базового алгоритма (GBET). 



Электронные библиотеки. 2025. Т. 28. № 6 
 

 

 

 

1425 

 

● Градиентный бустинг, построенный с использованием расширенного 

описания и сверхслучайных деревьев в качестве базового алгоритма (GBET 

(расш.)) 

● LightGBM – реализация градиентного бустинга с построением дере-

вьев по принципу leaf-wise и оптимизациями по скорости и памяти. 

● CatBoost – реализация бустинга, использующая упорядоченные стати-

стики и устойчивую обработку категориальных признаков. 

Параметры оценки качества 

Для оценки качества регрессионных моделей был использован коэффици-

ент детерминации 𝑅2, который показывает, какая доля дисперсии целевой пере-

менной объясняется моделью. 

Формально 𝑅2 определяется как  

𝑅2 = 1 −
∑ (𝑦𝑖−f𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦𝑖)2𝑛
𝑖=1

, 

где 𝑦𝑖  – истинные значения целевой переменной, f𝑖   – предсказанные моделью 

значения, 𝑦𝑖 – среднее значение по всем наблюдениям. Числитель ∑ (𝑦𝑖 −𝑛
𝑖=1

f𝑖)2 представляет собой остаточную сумму квадратов ошибок, а знаменатель 

∑ (𝑦𝑖 − 𝑦𝑖)2𝑛
𝑖=1  – полную сумму квадратов. Таким образом, 𝑅2 измеряет, 

насколько модель уменьшает ошибку по сравнению с простейшей моделью, ко-

торая всегда предсказывает среднее значение. 

В табл. 2 представлены значения коэффициента детерминации 𝑅2 для де-

сяти задач. По строкам указаны задачи, по столбцам – использованные методы, 

указанные выше; обозначения Rel. diff (%) – относительная разница между 

наилучшим и наихудшим результатом; N – число объектов; n – число признаков. 
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Таблица 2. Результаты эксперимента 

 RT in DF ET in RF ET in DF ET in DF 

(расш.) 

CatBoost LightGBM GBRT GBET GBET 

(расш.) 

Rel.diff 

（%) 

Size 

(N x n) 

Задача 1 0.894 0.902 0.904 0.904 0.881 0.845 0.902 0.917 0.917 8.5 439*86 

Задача 2 0.906 0.905 0.924 0.939 0.903 0.921 0.912 0.932 0.934 4.1 451*98 

Задача 3 0.918 0.94 0.942 0.943 0.935 0.932 0.923 0.945 0.947 3.1 439*86 

Задача 4 0.850 0.892 0.914 0.915 0.901 0.917 0.870 0.908 0.920 8.2 196*88 

Задача 5 0.851 0.892 0.916 0.919 0.908 0.912 0.870 0.908 0.929 9.2 447*90 

Задача 6 0.797 0.860 0.896 0.919 0.890 0.886 0.796 0.897 0.906 15.4 234*98 

Задача 7 0.902 0.908 0.927 0.933 0.873 0.927 0.899 0.928 0.928 7.0 231*98 

Задача 8 0.902 0.889 0.926 0.935 0.908 0.911 0.919 0.926 0.926 5.2 235*86 

Задача 9 0.864 0.833 0.869 0.877 0.848 0.877 0.851 0.870 0.877 5.3 195*88 

Задача 

10 

0.844 0.768 0.863 0.863 0.869 0.841 0.768 0.863 0.879 14.5 173*68 

 

Анализ результатов 

Модели, основанные на сверхслучайных деревьях, демонстрируют более 

высокие результаты по сравнению с моделями на деревьях решений. Их исполь-

зование в структуре дивергентного леса обеспечивает лучшие показатели, чем 

в случайном лесе, что подтверждает большую значимость дивергентного ансам-

блирования для данного базового алгоритма. 
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Сравнение градиентного бустинга на деревьях решений и градиентного бу-

стинга на сверхслучайных деревьях показало преимущество второго: за счет боль-

шего разнообразия базовых моделей и снижения корреляции их ошибок ан-

самбль на сверхслучайных деревьях демонстрирует более высокую обобщающую 

способность и меньшую склонность к переобучению на рассмотренных данных. 

Применение нового метрического пространства стабильно улучшает ре-

зультаты. Так, сверхслучайные деревья в дивергентном лесе с новой метрикой 

дают более высокие значения 𝑅2  по сравнению с исходным пространством во 

всех задачах. Аналогично, градиентный бустинг на сверхслучайных деревьях в но-

вом метрическом пространстве также демонстрирует улучшения относительно 

базового варианта. 

Наиболее высокие результаты наблюдаются в следующих случаях: 

− в задачах 2, 6, 7 и 8 – сверхслучайные деревья в дивергентном лесе 

с расширенным набором признаков; 

− в задачах 1, 3, 4, 5 и 10 – градиентный бустинг на сверхслучайных де-

ревьях с расширенным набором признаков; 

− в задаче 9 оба подхода показали сопоставимые и максимально высо-

кие значения 𝑅2. 

Таким образом, использование нового метрического пространства повы-

шает устойчивость и эффективность моделей, однако выбор оптимального ме-

тода зависит от специфики конкретной задачи. 

ЗАКЛЮЧЕНИЕ 

Исследованы различные ансамблевые методы регрессии, включая случай-

ный лес, градиентный бустинг, LightGBM, CatBoost, а также предложена модифи-

кация метода дивергентного леса. Особое внимание уделено выбору базовых ал-

горитмов и анализу влияния метрических методов расширения признакового 

пространства на качество предсказаний. 

Результаты экспериментов показали, что использование метода сверхслу-

чайных деревьев в качестве базового алгоритма обеспечивает наилучшее соотно-

шение между точностью и устойчивостью модели. По сравнению с классическими 
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деревьями решений, метод сверхслучайных деревьев демонстрирует более вы-

сокие значения 𝑅2  во всех вариантах ансамблей – как в случайном лесе, так и 

в дивергентном лесе и градиентном бустинге. 

Метод дивергентного леса продемонстрировал преимущество по сравне-

нию со случайным лесом, особенно при увеличении параметра баланса μ. 

Это подтверждает эффективность итеративного обновления целевой перемен-

ной, которое позволяет модели лучше адаптироваться к сложной структуре дан-

ных. 

Переход к расширенному признаковому пространству с помощью метода 

на основе метрики Махаланобиса дал дополнительное улучшение качества для 

всех моделей. Данная метрика оказалась особенно полезной при наличии корре-

лированных признаков, так как она учитывает взаимные зависимости и масштаб 

признаков, формируя более адекватное представление о расстояниях между объ-

ектами. 

В целом можно сделать следующие выводы. 

● Метод сверхслучайных деревьев как базовый алгоритм обеспечивает 

стабильное и высокое качество прогнозов как в дивергентном лесе, так и в гради-

ентном бустинге. 

● Использование расширенного признакового пространства с помо-

щью метода на основе метрики Махаланобиса позволяет улучшить обобщающую 

способность моделей и повысить точность на сложных данных. 

Таким образом, предложен подход, основанный на сочетании двух принци-

пов: использование сверхслучайных деревьев в дивергентном лесе и градиент-

ном бустинге; расширение признакового пространства с использованием мет-

рики Махаланобиса. Показано, что подход повышает эффективность регрессион-

ного моделирования и улучшает адаптацию моделей к структурно сложным набо-

рам данных. 
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Abstract 

This study presents the results of an experimental analysis evaluating the effec-

tiveness of Extra Trees within gradient boosting models, as well as in a newly proposed 

ensemble framework where the forest is generated under conditions of enhanced in-

ternal divergence.  Additionally, the paper explores the performance of Extra Trees 

when applied to novel feature representations computed as distances to a selected set 

of reference examples. It has been shown that the use of Extra Randomized Trees in 

gradient boosting and divergent forest models improves generalization ability. The use 

of expanded feature sets leads to even greater generalization ability. 

Keywords: regression modeling, ensemble learning, metric space, extremely ran-

domized trees method. 
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