
Электронные библиотеки. 2020. Т. 23. № 4

835

УДК 004.78

ОСОБЕННОСТИ МОНИТОРИНГА МОБИЛЬНЫХ СИСТЕМ ОБРАБОТКИ

ИНФОРМАЦИИ

О. Панарин1, И. Захаров2

1,2 Сколковский институт науки и технологий, г. Москва

1O.panarin@skoltech.ru, 2i.zacharov@skoltech.ru

Аннотация

Рассмотрена реализация подсистемы мониторинга систем обработки ин-

формации на мобильных платформах и ее применение на беспилотных автомо-

билях. В условиях беспилотной эксплуатации автомобиля предъявляются наибо-

лее жёсткие требования к надежности систем обработки информации, принятию

решения о готовности этих систем к эксплуатации и обеспечению анализа их воз-

можных сбоев. Представленная система мониторинга pLOG сочетает в себе функ-

ционал записи событий операционной системы устройств и измерений парамет-

ров систем в реальном времени, при этом запись производится как файлы, так и

в базу данных временных рядов (TSDB). При этом каждый сервер в составе си-

стемы обработки информации на мобильных платформах дублирует запись обо

всех событиях в системе.

Ключевые слова: сенсорные данные, распределенные системы,

мониторинг

MONITORING MOBILE INFORMATION PROCESSING SYSTEMS

O. Panarin1, I. Zacharov1

1Skolkovo Institute of Science and Technology, Moscow

1O.panarin@skoltech.ru, 2i.zacharov@skoltech.ru

Abstract

We describe the implementation of the monitoring for the IT systems at the core of

the autonomous driving vehicle. The role of the monitoring is to assist in decision to

mailto:O.panarin@skoltech.ru,
mailto:i.zacharov@skoltech.ru
mailto:i.zacharov@skoltech.ru
mailto:O.panarin@skoltech.ru,
mailto:i.zacharov@skoltech.ru
mailto:i.zacharov@skoltech.ru

Russian Digital Libraries Journal. 2020. V. 23. No 4

836

start the driving cycle and continuous assessment for the fitness to drive the vehicle.

The requirements for the monitoring system with the increased resiliency and data

replication make it sufficiently different from standard monitoring systems and

warrant a unique implementation tuned for the autonomous driving requirements.

The monitoring system combines the OS events and real-time measurements of sensor

data. The information is stored in flat files for emergency access as well as in a Time

Series Data Base (TSDB).

Keywords: mobile systems, distributed systems, sensor data, monitoring

INTRODUCTION

The autonomous driving is facilitated with information processing system ana-

lyzing data coming from many different sources (for example the LIDARs for the dis-

tance measurement, stereo-vision, global positioning, etc.) in combination with the

embedded maps, real time object classification and decision taking (Neural networks,

expert systems). The information processing system is built with modern high perfor-

mance servers in ruggedized enclosure with water cooling. Combined performance of

such system in autonomous vehicle may exceed 100 Tflop/s (e.g. for the single preci-

sion floating point operations) while the power consumption is in the order of 5 KW

with contemporary technology. The performance is distributed between several sys-

tems usually serving one kind of data source for analysis each. For example, there is

the LIDAR analysis system, system for stereo-vision of the right wing and so on, as well

as a system that combines all the information and taking the steering decisions.

While specific implementation is vehicle dependent the common element in the

contemporary systems is the high performance server running Linux OS with GPU ac-

celerator to speed up the neural network operations. The information processing sys-

tem in an autonomous vehicle is computational cluster consisting from such servers

with a number of networks. In particular, there is a high speed network that shares all

raw and/or analyzed sensor data and allows to store the data in a logging operation at

a speed of 5 GB/s. The given performance is required and sufficient at current techno-

logical level (and with the current sensor resolution) for vehicle autonomous operation

on one hand and to store the data for transfer to the laboratory and analysis off line.

We continue to analyze the data storage requirements.

Электронные библиотеки. 2020. Т. 23. № 4

837

For completeness we mention another type of the event storage system in an

autonomous vehicle to store data related to an emergency and/or crash analysis. This

type of storage system should provide an absolute data integrity that may be required

to analyze vehicle movement from the liability perspective. The speed or size of storage

should be sufficient to store the last 30 seconds of vehicle movement before an aver-

sive event. This subsystem is required for the SAE vehicle readiness level 3 and above

[1] to cater for the insurance claims.

The main subject of this article is the subsystem dedicated to monitoring the

servers and the networks they connect in an autonomous vehicle coupled with the

storage and analysis of the monitoring data. We have reported previously an advanced

implementation of the monitoring in autonomous vehicle [14] and extend the study in

this article.

Before an autonomous vehicle may be allowed to move there should be a clear

understanding that all subsystems work as expected, the sensors are collecting the

data, servers are up and running and the vehicle is ready for the operation. During the

operation any deviation from the expected behavior should be reported to the opera-

tor to reclaim the vehicle (level 2, 3 of SAE) or it should lead to an emergency/con-

trolled stop (level 4, 5 SAE). During the regular operation monitoring systems is not

critical and is necessary only if problems are detected. If there is a problem the col-

lected monitoring information should be sufficient to analyze the situation.

Monitoring of servers in Datacenter setting is well understood with a number of

successful implementations. For example, there are the most flexible and adoptable

Nagios [2] or Zabbix [3] monitoring systems with highest deployment track record for

Datacenters. The autonomous system monitoring has a similar task with a number of

peculiarities.

Here is the list of features unique to the monitoring in autonomous vehicles:

• The reliability requirement must exclude any single point of failure and

allow for multiple failures in the monitoring system. Of course, even a single failure in

a non-critical component, such as the monitoring system may lead to the decision to

stop the vehicle. However, the analysis of the failure has to be performed with the

same monitoring system; therefore, the monitoring must be especially robust and

allow for multiple points of failure. Using this monitoring system to analyze failures

Russian Digital Libraries Journal. 2020. V. 23. No 4

838

may lead to the resolution of the problem “in the field” and allow to continue vehicle

operation

• There are non-standard (i.e. not typically found in the Datacenter) sensors

in the system. In the typical Datacenter monitoring systems the sensors are attached

with IMPI and SNMP protocol; in a vehicle there are additional standards (such as the

COM-Bus and networks like 100Base-T1) that must be integrated in the monitoring

system

• The autonomous vehicle cluster has small number of servers (nodes). The

Datacenter monitoring systems scale to 100s and 1000s of nodes while the

autonomous vehicle cluster is limited to about 10 servers. This peculiarity allows to

implement monitoring systems with smaller complexity and aids to increase the

robustness

• There is typically no need to keep the monitoring data for duration beyond

the immediate run or a few runs of the autonomous vehicle. This relaxes the storage

requirement and allows to increase the robustness by duplication of the incoming

monitoring data on all the nodes

• There is a need to provide the monitoring data to the operator through

different interfaces, such as the GUI or WEB-interface for a comfortable analysis by

operator without special training, as well as harder to interpret data with an interface

not featuring any graphics. This is necessary for casual analysis of the monitoring data,

as well as for the emergency analysis to restore system functionality after a crash

• The monitoring system should adjust itself to the running environment

without the need for a special configuration or tuning in an autonomous vehicle. We

expect that there is a great number of autonomous vehicles where the monitoring

system is deployed and it is not possible to follow up and tune each separate

installation manually. With other words the monitoring system should run “out-of-the-

box” and only in special conditions require analysis and tuning.

In what follows we consider how a monitoring system that fulfills all these re-

quirements may be implemented for monitoring servers in an autonomous vehicle.

Further we provide examples running this system. Before that we analyze competing

strategies for building such monitoring system.

Электронные библиотеки. 2020. Т. 23. № 4

839

STRATEGIES FOR THE MONITORING SYSTEM

System under study — high performance cluster with nodes using OS Linux.

There are a number of tools exist to monitor each individual system. For example, top,

htop, nmon, vmstat, iotop, iftop, netstat, bmon, glances and so on (see the list in ref.

[4]). All these utility programs use Linux statistics that is provided through the (pseudo-

) file system /proc. For example, the processor load statistics can be read from the file

/proc/stat, the memory usage from /proc/meminfo, network /proc/net/dev, storage

/proc/diskstats and so on. During each read from these files Linux kernel driver is

providing internal counters data. The only difference between the utility programs is

how each structures the output and how fast the programs are refreshing the view for

the user.

There several solution to monitor the whole cluster consisting of several servers.

For example, Nagios, ganglia, zabbix, cacti and so on (see the list in ref. [5]). These pro-

grams obtain the data from the same interface /proc, but structure it in a way comfort-

able to judge the state of the whole cluster. Also, some of these programs (eg. zabbix)

store the data in a database.

Typically, the autonomous vehicle would integrate monitoring solution based on

the listed programs. The contemporary computational base uses Linux servers (clus-

ters) for the implementation of the autonomy function in this functional testing phase,

which is considered as an intermediate phase on the way to broad deployment of au-

tonomous vehicles that will use a different computing hardware. Current Linux servers

running in the vehicles should be replaced by specialized hardware suitable for massive

application. Therefore, investment into the monitoring software at this stage may

seem premature.

Our strategy is different. We suggest that the evolution of Linux clusters in au-

tonomous vehicles will follow the specialization and miniaturization trend but will keep

the current software interfaces. Following this hardware evolution the monitoring soft-

ware will demand health management function which is not part and cannot be ex-

pected from the standard Linux monitoring programs. This transformation will go in

hand with the integration of multitude of sensors that will provide the data for the

health management. With the use of standard Linux interfaces the general purpose

monitoring systems like Zabbix can be extended with additional functionality but the

Russian Digital Libraries Journal. 2020. V. 23. No 4

840

complexity will grow substantially which is conflicting with the stated requirement.

Therefore, on the specialized future computational platforms used to run autonomous

vehicles the monitoring and health management software will also be special, even if

it will continue use todays software interfaces. The proposed monitoring software is

expected to evolve in this direction.

On a timeline of 5–7 years the monitoring system transformed and integrated

into the health management system of an autonomous vehicle will follow same mile-

stones of security provisioning in the maned aviation [6]. In aviation this process is far

from over [7], but this experience influences our planning in preparing software for

autonomous vehicles.

IMPLEMENTATION OF THE MONITORING SYSTEM

The implementation is based on a symmetric deployment of the software on all

nodes of the cluster (servers) independent of the intended usage or characteristics of

the server or application running on it. There should be however a dedicated node that

collects and stores all data from the cluster, including the sensor data. Naturally the

regular access to the monitoring data will provided from this node, but because of the

symmetry all other nodes collect and store same monitoring data. In case of network

failure and node separation the monitoring data may be obtained from any surviving

node. It will contain information about the working of the cluster before the separation

and each server will have information about its own state after the separation and it

can be used to analyze the crash.

The analysis of cluster events is aided by time marks recorded with the data. The

cluster is fully time-synchronized with the PTP (IEEE 1588 [8]) protocol having resolu-

tion of about 1 micro-second. In case of network separation the clock drift is not con-

sidered critical, since in this emergency mode the cluster should work only few (tens)

of minutes before the communication is restored.

The information is collected by daemons that are started when OS is booted on

the cluster nodes. The logical interaction scheme is shown in Fig. 1 and each cluster

node implementing the same scheme.

Электронные библиотеки. 2020. Т. 23. № 4

841

Fig. 1. The architecture of the monitoring system in autonomous vehicle for each node

On each node we start the OS Linux, Plog daemon, Plog-net daemon and Akumuli

daemon. The basic Plog daemon starts first when Linux boots, initializes memory struc-

tures, collects the sensor and OS data, writes them to into the memory and an asci file.

Plog is refreshing this data every 2 seconds (tunable) and sends this data in a multicast

packet if network is available. After Plog – the Plog-net daemon starts, it collects the

data packets sent by Plog daemon running on other servers on the network and adds

this data to the structure in memory and writes an asci file for each remote server. The

dump to file is important, as it increases the chances that post mortem analysis may

be done after a crash; to limit the size of the asci file it contains data of last 20 minutes

of running (size can be adjusted).

The functional splitting between Plog and Plog-net is determined by the require-

ment of monitoring without the network. Local monitoring collects data from the

server and sensors that monitor external condition of each server. These sensors are

attached to each server and network router to monitor the power and cooling condi-

tions. Typically, each server collects data from its own sensor. The sensors from the

network devices are attached to (one or several) server(s) that process that data in

addition to their own monitoring. If network is separated it is possible to analyze the

monitoring data from network devices on these servers.

Users watch each node (and all sensors attached to it) with command zmon that

displays data on a textual console. A column for each server is displayed. The zmon

Russian Digital Libraries Journal. 2020. V. 23. No 4

842

command is modeled after the well-known Linux utility nmon [4], build with ncursors

library [9]. Command zmon with –R flag will show historical data stored in asci files and

displays them circularly with tunable speed.

The Plog-net daemon implements full functionality by collecting packets sent by

Plog from other nodes. In this way each node has the full picture of the working cluster.

In addition to the asci files where last 20 minutes of data is stored – all data is

sent to the local time-series database Akumuli [10]. It maintains a larger data collection

of about 1 month worth data (tunable) that results in about 4 GB of storage size.

Akumuli can supply this data in format json to the Grafana [11] plotting package. Each

cluster node has its own akumuli agent and grafana-server daemon. If graphics head is

available the monitoring data can be analyzed with graphics tools where trends are

clearly visible.

This implementation is fully symmetrical and does not need a specialization or

per server tuning. When the test fleet of autonomous vehicles grows it will save time

and resources in setting up the system and eliminates configuration mistakes.

The usage of the Time Series Data Base (TSDB) Akumuli for monitoring in Data-

centers has been proposed earlier (see for example [12]). Akumuli – is developed by

Evgeny Lazin [13] and its distinctive feature is speed and compactness.

The known Akumuli limitations, such as the strict locality of application (not sup-

porting distributed data collection) and chronological data entry order do not play a

role in our setup, since the Plog-net daemon will utilize local Akumuli agent with strict

data entry with the local time mark. In addition, all servers support and run time syn-

chronization protocol, therefore a discrepancy between the “local” and “remote” time

mark is a symptom of dysfunction of the system and a reason to stop the vehicle. On

the other hand the speed and compactness were decisive criteria when choosing this

TSDB for autonomous vehicle monitoring data.

All accesses to the TSDB Akumuli write node id and other static information that

allows performing a search and selection of data related to a specific node. In this way

we can analyze the work of each and single node as well as cluster as a whole starting

from the information stored on each node in an autonomous vehicle cluster.

Электронные библиотеки. 2020. Т. 23. № 4

843

THE METRICS SELECTION

Generally all sensor and OS data are stored in the TSDB and therefore available

for the retrieval and graphical analysis with Grafana. For the zmon tool that has to fit

the information on a single console display we are limited to a generic 224x256 (col-

umns x rows) letters and numbers that has to be structured in a most intuitive way. For

the first implementation in zmon we have chosen to present all of the environmental

data for each server, i.e. the power, temperatures (in/out) and flow rate of the coolant,

air temperatures measured inside the server enclosure and dew point temperatures.

We also present integral characteristics of the processing, such as the total idle, user

and system time, total network and total storage performance, GPU power draw and

occupancy. The GPU data should give a quick assessment if the application (using GPU

for neural network computation) is started and running on the system.

This selection is driven by the need to quickly assess the fitness of the system for

the field run and allows analyzing failures. Sensor data is connected to the safety sys-

tem that will protect servers against any adverse conditions. However, it may not be

immediately obvious what has triggered the alarm and/or the safety shutdown, espe-

cially if one or more systems are down and only few consoles are operating. The pre-

sent selection of signals for the display should help in this analysis.

A significant step from monitoring to a health management system has been

done in collecting the per-process data. This is not displayed in the zmon console view,

but stored in the TSDB and can be retrieved from there in a separate analysis program

which is planned for later. The per-process monitoring will narrow down cases when

the processing slows down or changes its characteristics from known values which may

be a signature of an imminent failure. We are tuning this feature on the Zhores cluster

at Skoltech [15] where we also do analysis for the failure signatures in user programs

processing data.

IMPLEMENTATION RESULTS

The monitoring activity loads the network at about 4 kB/s (or 13 MB/hour). There

is compression in the Akumuli TSDB therefore the database retains data of about one

month worth. After that period the new data replaces the oldest data and the moni-

toring does not need manual maintenance related to the uncontrolled use of storage.

Russian Digital Libraries Journal. 2020. V. 23. No 4

844

Fig. 2. Typical Grafana view of the monitoring results in a web brouser

The graphical analysis Grafana shows a typical representation, see Fig. 2. That

figure illustrates the upper Dashboard for one server, where we show (left to right and

up to down) the overall power consumption, temperature of the coolant, temperature

of the GPU, a series of air temperatures and the GPU power draw. Note that the graph-

ical representation is not finalized yet and will change as more experience is collected

using the system. The Grafana plotting package is flexible to make many different rep-

resentations of the same data, therefore it is more to the users of the system to define

the proper views. The actual monitoring implementation does not depend on the

Grafana graphics views. This is not the case for the zmon tool, which must be repro-

grammed if a different view on the system is required.

Fig. 3 shows a typical console display from the zmon tool. When analyzing the

system with the zmon program it is possible to switch on and off the information panels

represented with the header in inverse video. It is also possible to select and unselect

servers to view as part of the cluster configuration. In historic view this may serve as a

way to focus on certain configurations.

Электронные библиотеки. 2020. Т. 23. № 4

845

CONCLUSION

We have discussed the requirements and the implementation methodology of

the autonomous vehicle cluster monitoring. These requirements and the implementa-

tion are distinctly different from the monitoring in the Datacenters, although similar

devices (servers, routers) are used in these clusters. The project has been implemented

for autonomous vehicle testing fleet.

Further development will encompass the monitoring of the monitoring system

self, as well as the information from the applications that govern the data processing

in the autonomous vehicle.

REFERENCES / СПИСОК ЛИТЕРАТУРЫ

1. SAE J3016 “Levels of Driving Automation”. URL: https://www.sae. org/

news/2019/01/sae-updates-j3016-automated-driving-graphic (accessed: 12/05/2019)

2. Nagios. URL: https://www.nagios.org (accessed: 12/05/2019)

3. Zabbix. URL: https://www.zabbix.com (accessed: 12/05/2019)

 Fig. 3. Typical zmon (-R) display on a console terminal. Each column shows one node
in cluster

Russian Digital Libraries Journal. 2020. V. 23. No 4

846

4. Most Comprehensive List of Linux Monitoring Tools For SysAdmin.

URL: https://www.ubuntupit.com/most-comprehensive-list-of-linux-monitoring-

tools-for-sysadmin (accessed: 12/05/2019)

5. Top FREE Server Monitoring Tools. URL: https://www.dnsstuff.com/free-

server-monitoring-tools (accessed: 12/05/2019)

6. In-Time Aviation Safety Management: Challenges and Research for an

Evolving Aviation System (2018). ISBN 978-0-309-46880-0. DOI 10.17226/24962

7. Aircracft Health Monitoring – FAA Perspective, presented to IATA Confer-

ence by Tim Shaver, 13 November 2017. URL: https://www.iata.org/whatwedo/

workgroups/Documents/Paperless_Conference_2017/Day1/1130-1200_Air-

craftHealthMonitoring_FAA.pdf (accessed: 12/05/2019)

8. NIST Intelligent Systems Division. URL: https://www.nist.gov /el/intelli-

gent-systems-division-73500/ieee-1588 (accessed: 12/05/2019)

9. NCURSES Programming HOWTO. URL: https://www.tldp.org/HOWTO/

NCURSES-Programming-HOWTO/intro.html (accessed: 12/05/2019).

10. Akumuli. URL: https://akumuli.org/ (дата обращения: 12/05/2019)

11. The open platform for beautiful analytics and monitoring. URL:

https://grafana.com (accessed: 12/05/2019)

12. Живчикова Н.С., Шевчук Ю.В. Подсистема архивации данных системы

мониторинга Botikmon3 // Научный сервис в сети Интернет: труды XX Всероссий-

ской научной конференции (17–22 сентября 2018 г., г. Новороссийск). М.: ИПМ

им. М.В. Келдыша, 2018. С. 223–229.

URL: http://keldysh.ru/abrau/2018/theses/26.pdf doi:10.20948/abrau-2018-26

13. Лазин Е. Numeric B+tree reference. URL: https://akumuli.org/

akumuli/2017/ 04/29/nbplustree/ (accessed: 20/11/2019)

14. Панарин О., Захаров И. Особенности мониторинга мобильных систем

обработки информации// Научный сервис в сети Интернет: труды XXI Всероссий-

ской научной конференции (23–28 сентября 2019 г., г. Новороссийск). М.: ИПМ

им. М.В. Келдыша, 2019. С. 551–560. URL: http://keldysh.ru/abrau/2019/ the-

ses/81.pdf (accessed 16/11/2019). doi: 10.20948/abrau-2019-81

15. Zacharov I., Arslanov R., Gunin M., Stefonishin D., Bykov A., Pavlov S.,

Panarin O., Maliutin A., Rykovanov S., Fedorov M., “Zhores” – Petaflops supercomputer

https://www.ubuntupit.com/most-comprehensive-list-of-linux-monitoring-tools-for-sysadmin
https://www.ubuntupit.com/most-comprehensive-list-of-linux-monitoring-tools-for-sysadmin
https://www.dnsstuff.com/free-server-monitoring-tools
https://www.dnsstuff.com/free-server-monitoring-tools
https://www.iata.org/whatwedo/%20workgroups/Documents/Paperless_Conference_2017/Day1/1130-1200_AircraftHealthMonitoring_FAA.pdf
https://www.iata.org/whatwedo/%20workgroups/Documents/Paperless_Conference_2017/Day1/1130-1200_AircraftHealthMonitoring_FAA.pdf
https://www.iata.org/whatwedo/%20workgroups/Documents/Paperless_Conference_2017/Day1/1130-1200_AircraftHealthMonitoring_FAA.pdf
https://www.tldp.org/HOWTO/%20NCURSES-Programming-HOWTO/intro.html
https://www.tldp.org/HOWTO/%20NCURSES-Programming-HOWTO/intro.html
https://akumuli.org/
https://akumuli.org/%20akumuli/2017/%2004/29/nbplustree/
https://akumuli.org/%20akumuli/2017/%2004/29/nbplustree/
http://keldysh.ru/abrau/2019/%20theses/81.pdf
http://keldysh.ru/abrau/2019/%20theses/81.pdf

Электронные библиотеки. 2020. Т. 23. № 4

847

for data-driven modeling, machine learning and artificial intelligence installed in Skol-

kovo Institute of Science and Technology// Open Engineering. Published 2019-10-26,

V. 9. Issue 1. doi: https://doi.org/10.1515/eng-2019-0059

__

СВЕДЕНИЯ ОБ АВТОРАХ

ПАНАРИН Олег Анатольевич – менеджер по информацион-

ным сервисам и обработке данных Сколковского института науки и

технологий, специалист в области высокопроизводительных компью-

терных систем и систем мониторинга.

Oleg PANARIN – Manager of Data and Information Services at

Skolkovo institute for Science and Technology specializing in High Perfor-

mance Computing and System Monitoring.

e-mail: o.panarin@skoltech.ru

ЗАХАРОВ Игорь Евгеньевич – старший научный сотрудник

Сколковского института науки и технологий, специалист в области вы-

сокопроизводительных компьютерных систем и системного програм-

мирования.

Igor ZACHAROV – Senior researcher at Skolkovo institute for Sci-

ence and Technology specializing in High Performance Computing and Sys-

tem Programming.

e-mail: i.zacharov@skoltech.ru

Материал поступил в редакцию 15 ноября 2019 года

mailto:o.panarin@skoltech.ru

