

© Л. В. Городняя, 2026.
Данная статья распространяется на условиях международной лицензии Creative Commons License Attribution 4.0
International (CC BY 4.0).

УДК 004.43(042.4)

ФОРМЫ ДЛЯ ПОКАЗА РЕЗУЛЬТАТОВ СРАВНЕНИЯ ЯЗЫКОВ

ПРОГРАММИРОВАНИЯ НА ПРИМЕРЕ ДИАЛЕКТОВ ЯЗЫКА LISP

Л. В. Городняя[0000-0002-4639-9032]

Институт систем информатики им. А. П. Ершова СО РАН,

г. Новосибирск, Россия

Новосибирский государственный университет, г. Новосибирск, Россия

lidvas@gmail.com

Аннотация

Статья посвящена выработке форм для показа результатов анализа и срав-

нения особенностей языков, систем и парадигм программирования. Предлагае-

мая форма продемонстрирована на примере результатов сравнения языка Lisp,

наиболее успешных его диалектов (Scheme, Common Lisp, Racket, Clojure) и па-

радигмы функционального программирования на разных уровнях определения

языков и систем программирования. Форма позволила лаконично показать

наследование ряда особенностей языка Lisp и их развитие в диалектах на уровне

конкретного синтаксиса, абстрактной семантики и системной прагматики.

Ключевые слова: язык программирования, Lisp, Scheme, Common Lisp,

Racket, Clojure, функциональное программирование, сравнение языков програм-

мирования, конкретный синтаксис, абстрактная семантика, системная

прагматика.

ВВЕДЕНИЕ

Очередной этап разработки методики анализа и сравнения языков, систем

и парадигм программирования потребовал специальных форм для лаконичного

представления и показа результатов применения этой методики. Статья посвя-

щена текущим исследованиям, продолжающимся в Лаборатории информацион-

ных систем Института систем информатики им. А. П. Ершова Сибирского отделе-

ния Российской академии наук (СО РАН) в рамках тематики, связанной с мето-

дами преподавания программирования, требующими для контроля успехов

в обучении оценки продуктивности программирования и производительности

Электронные библиотеки. 2026. Т. 29. № 1

25

программ. Ранее была выработана визуально-табличная форма показа катего-

рий семантических систем языка программирования, затрагивающая кроме аб-

страктной семантики механизмы системной прагматики [1]. Теперь начинается

проверка разработанной парадигмально-семантической методики на конкрет-

ных долгоживущих языках программирования.

Изложение начинается с описания форм и обозначений для демонстрации

разноуровневых различий между диалектами языка программирования. Затем

дана краткая справка о языке Lisp и его диалектах Pure Lisp (1962), Scheme (1976),

Common Lisp (1984), Racket (1994) и Clojure (2007) в порядке их появления. Далее

сформулированы выводы о замеченных особенностях создания диалектов

языка Lisp.

Гомоиконный конкретный синтаксис программы представляет программу

в виде ее абстрактного синтаксического дерева (abstract syntax tree – AST), поз-

воляющего применять автоматизированную генерацию распознавателей при-

надлежности программы языку программирования. Трансформационная аб-

страктная семантика отражает эквивалентность разных форм представления

программ и данных, дающую основания для оптимизирующих преобразований

программ. Приаппаратная системная прагматика вычислений подчинена требо-

ваниям эффективности и производительности кода программ, включая про-

блемы безопасности и надежности. Парадигма программирования отражает

стиль мышления в процессе постановки задачи, способствующий продуктив-

ному программированию ее решения. Взаимодействие синтаксиса, семантики,

прагматики и парадигм можно рассматривать как логическую интерпретацию

диалектных абстракций языка программирования, представление которой тре-

бует специальных форм, показывающих архитектуру языка.

Методика учитывает, что термин «язык программирования» в речевой

практике понимается как «входной язык системы программирования, обеспечи-

вающей доступ к определенным аппаратным средствам». Такое понимание по-

требовало специальных форм показа результатов анализа и сравнения, отража-

ющих перемещение сквозных понятий на разные уровни реализации языка про-

граммирования. Поэтому, кроме сравнения конструкций языка программирова-

ния на уровне конкретного синтаксиса и абстрактной семантики, проанализиро-

ваны структуры данных, пространства доступных процессов обработки данных

Russian Digital Libraries Journal. 2026. V. 29. No. 1

26

и дисциплины доступа к памяти в типовых языках программирования на уровне

системной прагматики. Учтено, что понимание языка программирования всегда

опирается на ряд известных, возможно неявных конструкций, необходимых

для его реализации в системе программирования и воспринимаемых в практике

как неотъемлемая часть языка, в реальности существующего как целостный ком-

плекс, составляющие которого взаимосвязаны.

Долгоживущие языки программирования обычно расширяют ряд вычис-

лительных возможностей и парадигм программирования подключением стан-

дартных библиотек, пакетов, монад или выделением диалектов, повышающих

продуктивность программирования. Диалект становится самостоятельным язы-

ком, наследуя особенности исходного языка программирования, слегка изменяя

и дополняя их. Цель выполненного эксперимента – изучить особенности изме-

нения конкретного синтаксиса, абстрактной семантики и системной прагматики

языка программирования в диалектах и наследниках, показать особенности

наследования конструкций уровня и синтаксиса, и семантики, и прагматики.

При сравнении выделяются диалектные абстракции, работающие как метапоня-

тия, смысл которых немного варьируется в диалектах при сохранении архитек-

туры языка и поддержанных им парадигм.

В статье приведены результаты сравнения языка Lisp с его успешными диа-

лектами. Результаты представлены в форме, показывающей, что унаследовано,

что отвергнуто, что изменено и чем дополнено. Выбор языка Lisp для первого

эксперимента обусловлен не только четкостью и лаконизмом его описания [2],

но и ростом интереса к функциональному программированию, регулярно про-

исходящим при смене элементной базы и расширении сферы применения ин-

формационных технологий. Кроме того, Lisp можно характеризовать как язык

программирования одновременно и низкоуровневый, и сверхвысокого уровня

в зависимости от уровня решаемых задач. Lisp легко адаптируется к решению

новых задач и изобретению лаконичных и эффективных конструкций, не всегда

соответствующих шаблонам, навязываемым более популярными языками про-

граммирования. Такой спектр возможностей языка позволяет определять логи-

ческую интерпретацию сквозных понятий, показывающую общность решений,

связанных с языком, – архитектуру языка.

Электронные библиотеки. 2026. Т. 29. № 1

27

Эксперимент выполнен на материале диалектов Pure Lisp, Scheme, Com-

mon Lisp, Racket и Clojure [2–8], появившихся с шагом в 10 лет. Анализ этих диа-

лектов показал различие целей их создания и механизмов достижения целей

при минимальных изменениях семантики и прагматики исходного языка Lisp.

Более заметны изменения на уровне лексикона1 и конкретного синтаксиса, что

удобно для выделения диалектных абстракций. При сравнении языка Lisp с его

диалектами уделено внимание своду принципов функционального программи-

рования и расслоению языка программирования на базис, расширение, сред-

ства диагностики границ вычислимости и отладки программ, а также средства

связи процесса вычислений с внешним миром.

Для оценки особенностей диалектов были использованы примеры реали-

зации отдельных конструкций языка Lisp и его диалектов, проверенные на сис-

теме HomeLisp2, платформе jdoodle.com3 и других онлайн-компиляторах.

ФОРМЫ ПОКАЗА РЕЗУЛЬТАТОВ СРАВНЕНИЯ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ

Традиция описывать языки программирования и представлять их фор-

мальные определения сложилась во времена, когда каждый язык реализовы-

вали автономно, начиная с прагматики решений уровня аппаратуры, полной ре-

ализации анализаторов синтаксиса и семантики языка программирования, воз-

можно с разработкой своего формализма, типа расширенных форм Бэк-

уса – Наура (БНФ). Такие формализмы не претендовали на описание контекстно-

зависимых особенностей абстрактной семантики и системной прагматики из-за

чрезмерного разнообразия новых архитектур и развития методов реализации

языков программирования.

С тех пор в практике реализации новых языков программирования сложи-

лась тенденция ограничиваться синтаксической надстройкой над существую-

щими языками без пересмотра или уточнения решений уровня прагматики,

ограниченной RISC-архитектурой4, с небольшими вариациями семантики, что

1 Под термином «лексикон» понимается множество имен доступных функций.
2 http://homelisp.ru/
3 https://www.jdoodle.com/
4 RISC-архитектура – reduced instruction set computer

http://homelisp.ru/
https://www.jdoodle.com/

Russian Digital Libraries Journal. 2026. V. 29. No. 1

28

означает выделение небольшого числа известных стереотипов в этой сфере, по-

чти не подверженных вариациям. Это позволяет представлять наследование

конструкций между языками и выполнять логическую интерпретацию различий

в языке программирования в терминах диалектной абстракции.

Основные трудности представления логической интерпретации связаны

с тем, что описания языков программирования и их стандартов обладают слиш-

ком большим объемом (от 700 до 1500 страниц). Формализмы, используемые в

описаниях языка программирования, представляют собственно конкретный син-

таксис языка с неформальными пояснениями без показа границ наследования

конструкций предшествующих языков и решений уровня абстрактной семантики

и системной прагматики, описываемых средствами естественного языка. Сведе-

ния, полученные из таких источников, требуют проверки на реальных языках

программирования, подверженных развитию.

В порядке эксперимента для показа деталей наследования на уровне кон-

кретного синтаксиса между диалектами языка программирования предложено

использовать специальное расширение форм Бэкуса – Наура [9], отражающее

отношение наследования между понятиями разных диалектов и их одноимен-

ными определениями в предшественниках, частично дополненное показом осо-

бенностей некоторых понятий на уровне абстрактной семантики и системной

прагматики (табл. 1). Примеры такого представления конструкций «S-выраже-

ние», «Форма», «Функция», «ленивые вычисления», структуры данных и особен-

ностей «REPL-цикла»5, полученных при сравнении диалектов языка Lisp, приве-

дены в препринтах [22, 23]. В эксперименте удалось показать с помощью таких

обозначений некоторые особенности абстрактной семантики и системной праг-

матики с небольшими комментариями.

Для более полного показа лаконичной формы пока не нашлось, одни и те

же конструкции могут перемещаться из прагматики в семантику, из семантики

в синтаксис – граница между синтаксисом, семантикой и прагматикой условна.

5 REPL-цикл – название основного рабочего цикла, определяющего обработку программ, со-

кращение от Read Eval Print Loop.

Электронные библиотеки. 2026. Т. 29. № 1

29

Табл. 1. Расширение БНФ для показа результатов сравнения языков

программирования

Формула Примечание

Диалект: понятие Объявление понятия в диалекте

Старое_понятие.Предшественник Используется определение из

предшествующего языка

Старое_понятие!~Шаблон.Предшественник Из определения предшествующего

языка исключаются фрагменты,

соответствующие шаблону

Одноименное_понятие Используется новое определение,

полностью замещающее старое

Элемент … Произвольное число вхождений

элемента, возможно ни одного

_* «Symbol» [понятие] Последовательность литер, кроме

Symbol – продолжение после ошибки

ꓕ! «строка-диагноз» [понятие] Сообщение диагноза с приемом

дополнения в диалоге

Синтаксис Семантика Прагматика

 // Комментарий

Уровни определения (табл. 2)

[[Формулы над множествами]]

 // скобки для наглядности перехода

с семантике вычислений

Семантические системы. Семантика

вычислений в конкретном

пространстве (табл. 3)

((Операции над состояниями памяти))

 // скобки для наглядности перехода

к прагматике изменения памяти

Системная прагматика. Дисциплина

изменения состояний памяти (табл. 4)

Russian Digital Libraries Journal. 2026. V. 29. No. 1

30

Кроме показа наследования такие формулы позволяют определять

продолжающие и диагностические грамматики. Понятия разных уровней могут

входить в общую формулу (табл. 2).

Табл. 2. Формы для показа границ между уровнями понятий языка

программирования

Формула Примечание

 Элемент ::= { Синтаксис Семантика Прагматика
 // Комментарий }

Разные шрифты

 Элемент ::= { Синтаксис Семантика Прагматика

 // Комментарий }

Разные уровни

Строки табл. 2 выражают разноуровневые составляющие определения

языка программирования привлечением разных шрифтов для понятий уровня

синтаксиса, семантики и прагматики. Синтаксис – жирный шрифт, семан-

тика – жирный курсив, прагматика – обычный подчеркнутый шрифт, коммен-

тарий – курсив. Более наглядно использовать индексы (верхний, обычный, нижний).

Примеры так представленных различий в уровнях и границах вхождения в языки

программирования структур данных диалектов языка Lisp приведены в пре-

принте [23].

Не все важные особенности языка программирования удалось выразить

такими компактными формами. При поиске форм для показа результатов срав-

нения языков программирования, удобных для оценки выразительной силы

языка программирования, а также трудоемкости и продуктивности его реализа-

ции, эффективности и производительности программ, создаваемых на базе

языка программирования, учтена зависимость от последовательности крите-

риев принятия решений по декомпозиции программ, что не является однознач-

ным, зависит от парадигм программирования и классов решаемых задач. Для

диалектов языка Lisp последовательность критериев зависит от принципов функ-

ционального программирования (таких как универсальность данных, самопри-

менимость определений, равноправие и независимость параметров и един-

ственность результатов функций, гибкость границ блоков памяти и неизменяе-

мость хранимых значений). Технически в качестве основного критерия выбрана

Электронные библиотеки. 2026. Т. 29. № 1

31

семантическая декомпозиция определений языков программирования, позво-

ляющая показывать различия и дистанцию в понятийной сложности между по-

хожими семантическими системами6, образующими язык программирования.

Для лаконичного показа различий абстрактной семантики и системной прагма-

тики предложенные обозначения немного различаются для таких категорий се-

мантических систем, как вычисления, структуры данных, управление вычислени-

ями и обработка памяти – они обладают разными шаблонами определения

функций.

Семантическая система – это тройка [[V, F, R]], где:

V – основное множество данных, возможно бесконечное;

F – набор операций, возможно принадлежащих множеству V, расширяемый

программируемыми функциями;

R – варианты правил применения операций F к данным из V, возможно

входящих в F, представимые как данные из V, возможно программируемые как

функции.

Компактная форма взаимосвязей составляющих семантических систем

функционального программирования выражается формулой

 где «R является подмножеством F и F является подмножеством V» или «R

включено в F, а F включено в V».

Такой формат семантики языка программирования, присущий функцио-

нальному программированию, поддерживает передачу опыта программирова-

ния в форме диалектов и пакетов со своими правилами их интерпретации. В про-

цессе программирования новых функций, расширяющих F, возможна разра-

ботка новых вариантов R и новых семантических систем. Такие взаимосвязи

между понятиями позволяют формализовать и развивать правила R применения

операций F к данным V, включая кумулятивные (накопительные) эффекты между

составляющими системы программирования. Представления операций и про-

граммируемых функций F включаются в основное множество V, а правило при-

менения R операций F к данным V – не более чем одна из функций, возможно

6 С. С. Лавров предложил понятие «семантическая система» как расширение понятия «ал-
гебраическая система» заданием явного правила R применения операций к данным.

Russian Digital Libraries Journal. 2026. V. 29. No. 1

32

программируемая. Различные категории семантических систем (вычисления,

структуры данных, управление вычислениями и обработка памяти) могут быть

подчинены разным правилам применения R, требующим различных систем обо-

значений (табл. 3 и 4).

Эти обозначения позволяют показать различие в пространствах допусти-

мых значений и особенности ограничений на представление и выполнение

функций в разных семантических системах языка. Например, формула

[[∃ { BSD7 … } ∀ { etd8 …]] задает пространство допустимых данных, устроенное

как кумулятивная иерархия структур данных BSD над любыми значениями

из множеств элементарных типов значений etd. На уровне абстрактной семан-

тики языка программирования определение etd представляется как набор пре-

дикатов, распознающих принадлежность значения к конкретному типу или виду

элементарных значений. Определение BSD кроме предикатов содержит набор

конструкторов и деструкторов, связанных с неявными функциями доступа к па-

мяти и с диагностикой ошибочных значений.

Табл. 3. Обозначения для показа различий в определении V – основного

множества структур, видов и типов данных языка программирования.

 [[Формула]] Пояснение: Формула для семантических систем заключается

в двойные квадратные скобки

 etd Область определения всех функций опирается на любые

элементы множества типов данных etd9

  BSD etd Область определения всех функций может использовать любые

элементы кумулятивной иерархии10 базовых структур данных из

множества BSD11 над элементами типов данных из etd

V ǁ S

V ꓵ S

Фильтрация,

пересечение множеств для выделения подходящих

⊂ ⊃ U ꓵ ∈ ∉ Операции над множествами

7 Базовые структуры данных.
8 Элементарные типы значений.
9 Примеры etd: атом, number, string, metaD (метаданные) и др.
10 Универсум фон Неймана, кумулятивная иерархия множеств.
11 Примеры BSD: list, array, hash, set, structure и др.

Электронные библиотеки. 2026. Т. 29. № 1

33

 [[Формула]] Пояснение: Формула для семантических систем заключается

в двойные квадратные скобки

 : => λ (x y) Отображение, переход, формат представления схемы функции

˄S ′S ©S Методы обработки форм: eval quote compile

≈ ≡s ≡w Эквивалентно

∉! Ошибочное значение

ꓕ! Неопределенное значение

Такие обозначения позволили выразить различие между пространствами

допустимых данных, создания и обработки элементарных, встроенных и про-

граммируемых структур данных в соответствии с принципами функционального

программирования [22, 23]. Предложенные формулы могут использоваться как

уточнение анализатора текстов программ для оптимизирующей компиляции и

проверки условий семантической корректности программ и компиляторов.

Табл. 4. Обозначения для показа механизмов обработки памяти в языке

программирования

((Действие)) Пояснение: Действия заключаются в двойные круглые скобки

 < U ; …> Структура блоков памяти

 V ↕ S

 V ǁ S

Из V выбираются такие, как S

 ∆ S За исключением S

 → ↓ ↑ ← ↔ Операции над элементами памяти: → инициированние, ↓

запись, ↑ чтение12, ← удаление, ↔ обмен данными.

 !@ Чтение произвольного элемента с удалением из структуры

данных
 @ Адрес произвольного элемента памяти из структуры данных

 from ! из Выбор произвольного элемента памяти из структуры данных

 Пополнение блока памяти

 ± Переход к другой дисциплине функционирования

12↑: переменная => пара: данное с адресом

Russian Digital Libraries Journal. 2026. V. 29. No. 1

34

((Действие)) Пояснение: Действия заключаются в двойные круглые скобки

 ∅ Пустое множество

 # Число элементов блока памяти или структуры данных

 * Многократное повторение операции, может ни одного

 ~◊ Недостижимый из программы элемент памяти

(GC …) Вызов мусорщика из программы

 H VM GC Блок памяти, виртуальная машина, мусорщик

 Prog ⊂ Heap Включение одного блока памяти в другой
 Var ∉ call Вхождение элемента в выражение или категорию функций

Эти обозначения могут соответствовать неявным действиям, сопровожда-

ющим вычисления над структурами данных. Например, дисциплина обработки

памяти, определяемая формулой ((→ ↓ ↑* ←)), задает действия, сопровожда-

ющие применение локальной переменной, как рассредоточенную последова-

тельность13 неявных операций над памятью. Сначала разрешено завести эле-

мент памяти (→), ссылка на который связывается с переменной. Потом в элемент

памяти разрешается записать значение (↓). После этого записанное значение

можно читать из памяти произвольное число раз (↑*) в пределах локальной об-

ласти видимости. После выхода из этой области следует удалить ссылку на эле-

мент памяти (←), связь переменной с элементом памяти исчезнет, он становится

недостижимым из программы. Перед выполнением операции над памятью воз-

можна проверка, является ли операция допустимой в последовательности,

определяющей дисциплину обработки памяти. При определении языка про-

граммирования на уровне системной прагматики в таких обозначениях можно

задавать и другие условия корректности работы с памятью, неявно сопровожда-

ющей семантические функции. В результате общее определение языка програм-

мирования можно выразить как комплект проекций – схем, выражающих воз-

можность присоединять ассоциированные определения абстрактной семантики

и системной прагматики к определению конкретного синтаксиса для автомати-

ческой генерации компилятора.

13 Рассредоточенная последовательность задает порядок выполнения операций, между вы-
полнением которых происходят вычисления, определенные независимо.

Электронные библиотеки. 2026. Т. 29. № 1

35

Такие обозначения позволили при сравнении диалектов языка Lisp выра-

зить различие между семантическими системами поддержки обработки памяти

и хранимых в ней значений в соответствии с принципами гибкости границ бло-

ков памяти, использующей функцию GC – вызов мусорщика, и неизменяемости

хранимых значений, адреса которых достижимы из программы [23]. Общая

схема определения приобретает вид

Синтаксис [〚 Семантика 〛] [((Прагматика))]

Конструкциям уровня абстрактной семантики и системной прагматики мо-

гут соответствовать разные шаблоны кодогенерации, включая функционально

эквивалентные шаблоны для отладчика, компилятора и интерпретатора, пред-

ставления которых требуют другой, специальной макротехники.

Такие формулы можно использовать как представление дисциплины ра-

боты с памятью, контролируемой и на этапе компиляции, и в процессе исполне-

ния программы, что может способствовать обеспечению надежности и безопас-

ности программ.

НЕМНОГО ИСТОРИИ ЯЗЫКА Lisp

Идеи Джона Маккарти (John McCarthy), воплощенные в языке Lisp, сразу

вызвали ревнивую критику со стороны как программистов, так и математиков.

Математиков смущала противоречивость некоторых построений с точки зрения

классической математики, например различие контекстов определения, вызова

и вычисления функций 14 . Программисты не могли смириться с отсутствием в

языке привычной техники, начиная с «изменения состояний памяти», а также c

непредсказуемо медленной обработкой списков в сравнении с быстрой обра-

боткой векторов.

К середине 70-х годов XX в. Дана Скотт (Dana S. Scott) опубликовал кон-

структивную теорию, смягчившую критицизм математиков, построив первую не-

противоречивую модель бестипового λ-исчисления15 . Скептицизм программи-

стов оказался более устойчивее. Например, общее мнение, что Lisp – это интер-

претируемый язык, скорее всего, связано с тем, что реализации языка Lisp

14 https://en.wikipedia.org/wiki/Funarg problem/ – статья о Funarg-проблеме.
15 https://ru.wikipedia.org/wiki/ – непрерывность по Скотту.

https://ru.ruwiki.ru/wiki/Лямбда-исчисление#Семантика_бестипового_λ-исчисления
https://ru.wikipedia.org/wiki/

Russian Digital Libraries Journal. 2026. V. 29. No. 1

36

обычно предоставляют диалоговый – интерактивный стиль работы с програм-

мой на базе REPL-цикла и не формируют файл с результатом компиляции, по-

этому не заметно, что фрагменты программного кода компилируются по мере

необходимости. Такое мнение не исчезло при появлении в 1976 г. диалекта

Scheme, использующего совмещение чтения программы с ее полной компиля-

цией, но, сохраняющего диалог и добавляющего неявную эффективную вектор-

ную реализацию списков.

Уже в начале 60-х годов XX в. язык Lisp, включая интерпретатор и компиля-

тор, был описан в виде формализма на самом языке Lisp. Lisp позволяет созда-

вать программы, динамически порождающие код, выполнять любые системные

трюки, строить виртуальные машины, специализированные системы, диалекты

и пакеты, расширяющие язык. Такой потенциал языка Lisp дает ответ на вопрос:

«НАСКОЛЬКО новые задачи компьютерной обработки информации отличаются

от традиционных задач обработки чисел?». Основные тезисы ответа представ-

лены следующими утверждениями.

– Любой информации можно дать символьное представление, числа –

частный случай символьного представления, элементарные данные другой при-

роды можно представить как атомы.

– Все понятия программирования можно рассматривать как функции или

применение функций. Переменные, операторы или команды – не более чем

разные категории функций.

– Эксперименты при разработке решений новых задач продуктивнее вы-

полнять в диалоге на базе интерпретаторов. Компиляция полезна для доста-

точно отлаженных программ.

– Списки произвольной длины из элементов любой природы могут быть

гомоиконными конструкциям как высокого уровня постановки задачи, так и низ-

кого уровня системных решений. Вектора, множества, таблицы и другие струк-

туры данных на этапе экспериментов можно моделировать с помощью списков.

Концепции языка Lisp со временем кристаллизовались как парадигма

функционального программирования [13]16, хотя реализация языка изначально

16 Обзор литературы о функциональном программировании –

https://alexott.net/ru/fp/books/

https://alexott.net/ru/fp/books/

Электронные библиотеки. 2026. Т. 29. № 1

37

поддерживает основные императивные черты ради привлечения опытных про-

граммистов и возможности повышать надежность и эффективность программ.

Для быстрого ознакомления с идеями языка Lisp Дж. Маккарти выделил

семантический базис – диалект Pure Lisp, включающий в себя пять функций об-

работки списков (CONS, CAR, CDR, EQ, ATOM), четыре конструктора выражений

и функций (QUOTE, COND, LAMBDA, LABEL)17 и универсальную функцию EVAL,

способную вычислить любое выражение, правильно представленное списком,

что определяет границы вычислимости без использования семантики измене-

ния состояний памяти, без глобальных переменных. Пары функций QUOTE и

EVAL достаточно для поддержки разных схем вычислений, включая ленивые вы-

числения, оптимизации программ и любую макротехнику как основу метапро-

граммирования, определения интерпретаторов и компиляторов. Диалект Pure

Lisp дал ответ на вопрос «КАКОЙ может быть методика обучения программиро-

ванию на языке Lisp?». Ответ выглядит следующим образом:

– Выделить краткую базовую семантику, достаточную для определения

остальных конструкций языка (выражения, ветвления, рекурсивные функции).

– Дать примеры их символьного представления и применения при реше-

нии знакомых задач.

– Показать типовые решения некоторых задач с помощью отображений,

ленивых вычислений и метапрограммирования.

– Привести определения интерпретатора и компилятора для изучаемого

Pure Lisp на уровне калькулятора, а потом расширить определение Lisp-кальку-

лятора до обобщенного интерпретатора и компилятора.

Такая система понятий и средств обработки данных позволила поддер-

жать все семантические и прагматические принципы чисто функционального

программирования, позднее реализованного как основная парадигма програм-

мирования на базе ленивых вычислений в языках ML (1973), Hope (1980),

Haskell (1990) и др.

Дж. Маккарти ожидал, что оставшиеся проблемы организации вычисле-

ний будут решены в более поздней версии, условно названной Lisp 2, в которую

17 QUOTE – блокировка, COND – ветвление, LAMBDA – безымянная функция, LABEL – именова-
ние.

https://ru.wikipedia.org/wiki/Маккарти,_Джон
https://ru.wikipedia.org/wiki/Маккарти,_Джон

Russian Digital Libraries Journal. 2026. V. 29. No. 1

38

планировал включить обработку многомерных векторов, сопоставление с образ-

цами и организацию параллельных вычислений [11]. Рассказывая о языке Lisp,

Дж. Маккарти подчеркивал, что, экспериментируя, программист может изме-

нять в языке Lisp все что угодно, кроме константы Nil18 [12]. К 1962 г. были готовы

версия Lisp 1.5 и описание реализации системы, ставшей преемником самого

раннего языка Lisp [2]. Это описание языка стало основой для создания Lisp-сис-

тем как в США, так и за их пределами, в нашей стране на БЭСМ-6, ЕС ЭВМ, СМ-4

и других машинах19. Сложные данные языка Lisp на уровне синтаксиса выглядят

как списки элементов любой природы, хотя неявно в системе программирова-

ния на уровне системной прагматики языка поддержаны и другие структуры

данных, такие как вектора, множества, хэш-таблицы и изменяемые поля, став-

шие явными в более поздних диалектах. Хэш-таблица применяется для иденти-

фикации атомов, множество моделируется как список различимых параметров

функции, размеченное множество используется при организации списков

свойств атомов и пространств имен, изменяемые поля используются при орга-

низации рекурсии и оптимизации отложенных или ленивых вычислений, а век-

тора – для сопряжения со встроенными машинными процедурами.

В начале 60-х годов XX в. Питер Ландин (Peter J. Landin) в работе о λ-исчис-

лении [12] ввел понятие "call-by-name" 20 , использованное в описании языка

Algol-60. В 1964 г. он предложил машину SECD – виртуальную и/или абстрактную

машину, предназначенную для использования в качестве целевого языка (бэк-

энд) при компиляции языков функционального программирования [12]. Вскоре

появился Lispkit – реализация чисто функционального диалекта Pure Lisp с лек-

сической областью видимости, разработанного в качестве испытательного

и учебного стенда при изучении концепций функционального программирова-

ния, включая ранние эксперименты с ленивыми вычислениями [13, 14]. Полу-

ченные компилятор и виртуальная машина были легко переносимы. Важный

18 Это утверждение Джон Маккарти произносил в конце декабря 1968 г. в кабинете
А. П. Ершова в Новосибирске в цикле лекций, посвященных языку Lisp и верификации
программ.
19 https://www.computer-museum.ru/histsoft/lisp_sorucom_2011.htm
20 «вызов по имени»

https://ru.wikipedia.org/wiki/1962_год
https://en.wikipedia.org/wiki/Peter_J._Landin
https://www.computer-museum.ru/histsoft/lisp_sorucom_2011.htm

Электронные библиотеки. 2026. Т. 29. № 1

39

в контексте ленивых вычислений термин «мемоизация» был придуман Дональ-

дом Мичи в 1968 г. [15]. В 1971 г. Кристофер Стрэйчи предложил термин "call-by-

need"21, предшественник термина «ленивые вычисления» [16].

В 1974 г. в Xerox началась разработка аппаратуры и системы машинных ко-

манд для аппаратной реализации языка Lisp. Язык Scheme был разработан

в 1976 г. в MIT в рамках проекта по созданию Lisp-машин [3]. Появилось доказа-

тельство, что так называемая «неэффективность языка Lisp» обусловлена

не свойствами языка, а особенностями компьютеров и методов реализации

языка программирования. Практически одновременно термин "Lazy evaluation"

(ленивые вычисления) был введен в статье "Programming Languages and Their

Definition" Кристофера Стрейчи [17], в статье "A Lazy Evaluator" Питера Хендер-

сона и Джеймса Х. Морриса [16]. В 1978 г. был представлен язык программиро-

вания Lazy ML, который стал первым языком, основанным на парадигме лени-

вых вычислений. В 1978–1979 гг. был разработан язык программирования

Hope22 в Эдинбургском университете Великобритании. Этот язык оказал значи-

тельное влияние на Haskell, представленный программистскому сообществу

в 1987 г. с целью притормозить создание новых языков функционального про-

граммирования, их новизна затрудняет работу экспертов при решении вопросов

о приоритете публикуемых результатов.

В 1984 г., через 8 лет после Scheme, появился диалект Common Lisp – муль-

типарадигмальный язык общего назначения, дополняющий традиционные ди-

намические решения языка Lisp механизмом статического связывания перемен-

ных и раздельных пространств имен, специальных средств программирования

макросов, функционалов, пакетов и лексических замыканий функций [4].

В 1995 г. Common Lisp был стандартизован ANSI.

В последние годы особое внимание привлекает диалект Racket (ранее –

PLT Scheme), созданный в 1994 г. как платформа языково ориентированного про-

граммирования [5]. Это симптом перехода практики программирования

21 «вызов по необходимости»
22 Филд А., Харрисон П. Функциональное программирование. Пер. под редакцией В. А. Горба-

това. М. Мир, 1993, 638 с. Содержит описание различных вариантов «мусорщика».

Russian Digital Libraries Journal. 2026. V. 29. No. 1

40

от накопления правильности программ на уровне библиотек к уровню создания

диалектов и проблемно ориентированных языков.

В 2007 г. появился Clojure – современный диалект языка Lisp, предлагаю-

щий решения по верификации программ и параллельному программированию

[6–8].

ДИАЛЕКТ Scheme ДЛЯ ЭФФЕКТИВНОЙ РЕАЛИЗАЦИИ

Язык Scheme был разработан в 1976 г. в MIT в рамках проекта по созданию

Lisp-машин [3]. Scheme ответил на вопрос «КАК сделать функциональное про-

граммирование столь же эффективным как императивное?». Ответ включал сле-

дующее:

– Разграничить универсальность символьных вычислений отказом от

представления значений любой природы, а списки свойств символа оставить

только для переменных и функций.

– За основу системных структур данных взять вектора, а списки использо-

вать при необходимости как синтаксическое расширение в отдельном модуле.

– Чтение списочного представления программы, фактически являющегося

представлением ее абстрактного синтаксического дерева, совместить с прину-

дительной компиляцией, а универсальную функцию EVAL (интерпретатор) выне-

сти из базиса во вспомогательный модуль.

– От рецептов отложенных функциональных аргументов, формируемых

в точке вызова функции, перейти к формированию замыканий в точке опреде-

ления функции, заодно и макротехнику ограничить выполнением на этапе ком-

пиляции, что сводит ее потенциал к привычным возможностям препроцессоров

во многих языках программирования. При компиляции автоматически выпол-

нять оптимизацию рекурсий, сводимых к циклам.

– Смягчить неизменяемость данных, опираясь на унификацию присваива-

ний и определений функций, выполненную к тому времени при разработке

языка Algol 68, а заодно и разрешить изменять значения системных свойств сим-

вола (define = set!23).

23 set! работает только на ранее введенных символах, define на любых.

https://ru.wikipedia.org/wiki/Диалект_(программирование)
https://ru.wikipedia.org/wiki/Диалект_(программирование)
https://ru.wikipedia.org/wiki/Диалект_(программирование)

Электронные библиотеки. 2026. Т. 29. № 1

41

Язык Scheme заимствовал терминологию и синтаксис языка Lisp, не-

сколько изменив смысл ряда понятий и сузив трактовку почти всех принципов

функционального программирования. Из характерных особенностей языка Lisp

в языке Scheme поддержана примерно трeть. Самым заметным отклонением

от языка Lisp является введение булевых значений #f и #t вместо использования

константы Nil или пустого списка в качестве значения «ложь»24. Переход к векто-

рам пошатнул позиции пустого списка и атома Nil – реализация пустых векторов

в те годы не практиковалась. Принудительная компиляция программы, теряю-

щая исходное абстрактное синтаксическое дерево, затрудняет возможности ди-

намической оптимизации программ и процессов. Такая компиляция устраняет

повторную интерпретацию программ, что является оптимизацией многократно

используемых программ.

Можно считать, что так выделилось минимальное ядро грамматики языка

Lisp. Теперь существуют реализации Scheme на JVM.

Common Lisp ДЛЯ ПРОИЗВОДСТВЕННОГО ПРИМЕНЕНИЯ

Common Lisp был разработан в начале 80-х годов XX в. с целью объедине-

ния полезных механизмов большого числа разрозненных диалектов языка Lisp

[4]. Common Lisp часто противопоставляют языку Scheme – это два самых попу-

лярных диалекта Lisp. Scheme предшествовал Common Lisp и исходил не только

из той же традиции Lisp, но и от тех же разработчиков. Гай Стил, вместе с кото-

рым Джеральд Джей Сассман разработал Scheme, возглавлял комитет по стан-

дартизации Common Lisp, в котором было преодолено сужение потенциала

языка Lisp. Сохраняя и восстанавливая основные концептуальные решения

языка Lisp, диалект Common Lisp их дополняет, расширяя методы формирования

пространств допустимых процессов.

24 Вопреки предостережению Джон Маккарти: «Программист может изменять в языке Lisp все

что угодно, кроме константы Nil». Математиков смущало, что Nil одновременно и атом, и спи-

сок. В теории удобнее, чтобы любое данное принадлежало ровно одному типу.

Russian Digital Libraries Journal. 2026. V. 29. No. 1

42

Common Lisp иногда называют Lisp-225, а Scheme – Lisp-1, имея в виду ис-

пользование раздельных пространств имен для функций и переменных26. CLISP

проводит различие между временем чтения, временем компиляции, временем

загрузки и временем выполнения программы и позволяет пользовательскому

коду также учитывать это различие при выборе желаемого типа обработки про-

граммы на нужном этапе. В системе CLISP реализован пакет CLOS, дающий пол-

ную поддержку популярной в производстве парадигмы ООП.

Этот диалект резко расширил сферу производственного применения

языка Lisp, используя на уровне лексикона семантику доступа к многомерным

матрицам, хэш-таблицам, программируемым структурам данных, подобным

структурам в языке C, изменяемым полям и мультизначениям, удобными для

моделирования независимых потоков. Все это внешне представляется как

списки, но реализовано как эффективные структуры данных, доступные через

функции. Массивы могут содержать любой тип значений в качестве элемента,

смешивать разные типы в одном массиве или могут быть специализированы, со-

держать только определенный тип.

Common Lisp ответил на вопрос: «ЧТО может дать функциональное

программирование программной индустрии?». Ответ включает следующие

дополнения:

– Универсальность символьной обработки и структур данных неограни-

ченного размера дополнена средствами обработки конечных чисел и структур

данных, типичных для большинства языков программирования и приложений.

– Компиляция отдельных функций допускает и компиляцию полной про-

граммы без потери исходного списочного представления абстрактного синтак-

сического дерева.

– Самоопределение в форме рекурсии обогащено разнообразием схем

циклов, превосходящих по возможностям типовые схемы.

– Гибкость распределения памяти с возможностью программировать вы-

зов «сборщика мусора» дополнена средствами выяснять время, даты и этапы

25 Ассоциация с проектом Lisp-2 Дж. Маккарти [11].
26 Язык Lisp распался на два семейства – Lisp-1 и Lisp-2, различаемые по отношению к статике
и динамике, возможностям применения списков свойств и роли атома NIL = () в логике управ-
ления вычислениями.

Электронные библиотеки. 2026. Т. 29. № 1

43

работы программы, чтобы прогнозировать целесообразность применения тех

или иных методов.

– Неизменяемость хранимых значений уточняется введением неявного

понятия «поле» для работы с изменяемыми системными свойствами символа.

– Для функций, потребляющих много памяти, предоставляются их деструк-

тивные аналоги, приспособленные к более эффективной обработке данных

(conc-nconc, subst-nsubst, reverse-nreverse, union-nunion, mapcar-mapcon и др.)

– Единственность результата функции расширяется на мультизначения,

поддерживающие переход к многозначным функциям и организации парал-

лельных вычислений.

Введены понятия «поле», «пакет» и «мультизначение». Основное отличие

от языка Lisp связано с разделением пространств имен в зависимости от их

назначения и включения в разные пакеты для решения отдельных классов задач.

Common Lisp поддерживает средства динамического анализа и использо-

вался в разработке автоматизированных средств проверки доказательств тео-

рем (ACL2) и систем компьютерной алгебры (Аксиома, Maxima).

СРЕДА Racket ДЛЯ СОЗДАНИЯ НОВЫХ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ

Очередная версия учебной среды программирования на языке Scheme,

разрабатываемая с 1995 г. в Университете Дьюка для обучения созданию, разра-

ботке и реализации новых языков программирования, в 2010 г. получила назва-

ние Racket [5, 20]. Это означает переход интересов от продуктивности програм-

мирования к продуктивности разработки компиляторов.

Образовательная направленность повлияла на общую структуру языка

Racket как систему диалектов, соответствующих уровням обучения. Это заодно

позволило в реализации языка сохранить решения языка Scheme, принятые под

прессом компьютерных характеристик середины 70-х годов XX в., и дополнить

системную поддержку языка Racket в соответствии со значительно усовершен-

ствованными возможностями современной элементной базы и новыми требо-

ваниями ИТ.

Разработчики диалекта Racket выявили ключевые недостатки Scheme, за-

трудняющие разработку крупных и надежных систем, а именно отсутствие мо-

https://ru.wikipedia.org/wiki/Учебный_язык_программирования

Russian Digital Libraries Journal. 2026. V. 29. No. 1

44

дульной системы, слабую поддержку обработки исключений, метапрограмми-

рования и расширяемости, ограничения в типизации и структурах данных, отсут-

ствие способов для построения безопасных и масштабируемых систем. Для пре-

одоления таких недостатков Racket был создан как диалект языка Lisp и исполь-

зуется для реализации языков программирования, компиляторов и интерпрета-

торов, образовательных систем и платформ, языков для обучения и преподава-

ния, включая обучающие и экспериментальные языки. Оставаясь наследником

Scheme, Racket делает ставку на практичность, расширяемость и богатство ин-

струментов, уделяя больше внимания удобству использования и обучения, под-

держку метапрограммирования и инструментальных средств для разработки

языков программирования. Racket включает макросы на этапе и компиляции, и

выполнения с удобными функциями для разработки и отладки. Поддержаны

диалект Scribble – язык разметки для документации и ряд диалектов, связанных

с основными парадигмами программирования, проблемноориентированными

языками (domain-specific language – DSL) и приложениями ИТ.

Производительность Racket обеспечена JIT-компилятором и механизмом

«сборки мусора» с поддержкой поколений объектов. Включена поддержка мел-

козернистого параллелизма. Имеется учебная версии Minimal Racket без паке-

тов, поддержка байт-кода и JIT-компиляции для архитектуры ARM 27 , а также

быстродействующий Typed Racket и другие диалекты. Разработана собственная

виртуальная машина. В экспериментах по разработке разных версий Racket об-

наружилось, что компиляция не всегда повышает производительность про-

грамм, но может способствовать продуктивности программирования28. Система

макросов в Racket используется для создания полных языковых диалектов, за-

трагивая семантику. Racket отвечает на вопрос «КТО будет определять языки

программирования в будущем?».

Ответ достигается следующими решениями:

– Универсальность символьных вычислений распространена на приобре-

тение профессиональных навыков, включающих разработку документации, что

27 Архитектура ARM (Advanced RISC Machine) – усовершенствованная RISC-машина для мобиль-
ных устройств.
28 Сотрудники фирм-разработчиков компиляторов утверждают, что необходимость ожидать
результат компиляции дает им защищенную нишу времени для продумывания программ.

https://ru.wikipedia.org/wiki/RISC

Электронные библиотеки. 2026. Т. 29. № 1

45

соответствует предложенной Д. Кнутом парадигме литературного (грамотного)

программирования (literate programming)29.

– Среди диалектов выделены языки, соответствующие уровням способно-

стей, навыков и знаний студентов (Minimal Racket, Racket, Lazy Racket, Typed

Racket и др.).

– Независимость параметров поддержана механизмом сопоставления

с образцами, достаточными для представления грамматик с переводом.

– Самоопределение и рекурсивные функции подкреплены практикой при-

менения генерации лексеров/парсеров, а также определением языков на

уровне абстрактного синтаксического дерева.

– Гибкость распределения памяти сопровождается средствами рефакто-

ринга, тестирования и измерения производительности кода.

– Единственность результатов функции расширена средствами организа-

ции асинхронных процессов, подразумевающих мультизначения.

Racket примерно на треть наследует решения языка Scheme и на две трети

возвращается к исходным решениям языка Lisp. Самое заметное отличие диа-

лекта Racket от семантики языка Lisp – использование специального булева зна-

чения #f в качестве значения «ложь» вместо пустого списка () или атома Nil. Хотя

формально язык Racket называют диалектом языка Scheme, по своим особенно-

стям он ближе к Common Lisp.

Clojure – НОВЫЕ ГОРИЗОНТЫ ИТ

Современный диалект языка Lisp Clojure появился в 2007 г., разработан Ри-

чем Хикки (Rich Hickey), независимым разработчиком ПО, ранее разработавшим

dotLisp в рамках проекта .NET Framework. Clojure наследует особенности языка

Lisp, обеспечивающие гибкое и мощное метапрограммирование, поддерживает

синтаксическое расширение [6–8] и надежную семантику, дополненную меха-

низмами системной прагматики для программирования приложений на базе

29 http://www.literateprogramming.com/ – методика профилактики кризиса ухода исполнителя
и разбухания описаний, создаваемых техническими писателями. Не исключено, что методика
не стала массовой из-за высокого темпа развития ИТ, опережающего созревание речевой
практики. Возможно, Д. Кнут хотел привлечь внимание к тому, что искусство программирова-
ния основано и на владении естественным языком.

https://ru.wikipedia.org/wiki/Диалект_(программирование)
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/.NET_Framework
http://www.literateprogramming.com/

Russian Digital Libraries Journal. 2026. V. 29. No. 1

46

распределенных и параллельных процессов.

В этом языке определения функций могут неформально сопровождаться

пред- и постусловиями, что помогает проверке утверждений об аргументах и по-

лученных результатах, а также позволяет при тестировании проверять инвари-

анты функций. Clojure, как язык программирования, не предоставляет встроен-

ных методов верификации программ, но для обеспечения корректности про-

грамм использует различные подходы и инструменты, включающие средства ти-

пизации и спецификации (clojure.spec, malli), динамический контроль данных и

тестирование (clojure.test, test.check), помогающие обнаруживать неожиданно-

сти. Поддержана интеграция с внешними инструментами для формальной вери-

фикации с возможностью автоматического тестирования свойств, такими как

Rosette, Z3, SMT (satisfiability modulo theories) или ACL2, проверки типов данных

(clj-kondo, Eastwood), а также статические анализаторы для проверки безопасно-

сти кода или соблюдения определенных стандартов.

Динамическая типизация означает, что, кроме статической проверки ти-

пов переменных на этапе компиляции, проверяются типы данных, точно извест-

ные во время выполнения, что существенно повышает надежность и безопас-

ность вычислений. Заодно это обеспечивает гибкость и быструю разработку, так

как не требует явного объявления типов переменных. Clojure уделяет большое

внимание тестированию (clojure.test, test.check, midje, kaocha, Unit Testing, Inte-

gration Testing, Property-based testing), вызывающему у практиков больше дове-

рия, чем верификация.

Статический анализ выявляет потенциальные ошибки, нарушения стиля

кодирования, неиспользуемый код и константные вычисления (эквивалент

чисто функционального программирования), поддерживает автодополнения

для более раннего обнаружения ошибок. Доступны библиотеки, позволяющие

определять контракты (core.contracts, lucid.policy) для функций,

и автоматическая генерация документации. Возможна явная реструктуризация

структур данных, работающая с любой последовательностью, включая:

 списки, вектора и последовательности Clojure;

 любые коллекции, реализующие java.util.List (например, ArrayLists и

LinkedLists);

 Java-массивы;

Электронные библиотеки. 2026. Т. 29. № 1

47

 строки, реструктурированные как списки символов;

 списки аргументов функций.

Реструктуризация означает переход от ранее созданной структуры данных

к структуре с другим методом доступа при сохранении ее наполнения30, допус-

кается использование подчеркивания «_» для обозначения игнорируемой пози-

ции. Исходная структура сохраняется в соответствии с принципом неизменяемо-

сти хранимых значений. Реструктурированная последовательность аргументов

функции позволяет вместо имен связанных переменных использовать нумера-

цию параметров, список которых можно рассматривать как вектор31. К первому

аргументу функции можно обращаться, просто используя «%».

Параллельное программирование использует транзакционную память,

как в базах данных, а также агентов и разные виды указательных переменных.

Поддержаны ленивые последовательности, вспомогательные процессы и вве-

дено несколько неявных понятий для поддержки параллелизма и программи-

рования своих структур данных с учетом проблем надежности и безопасности.

В качестве компромисса между идеями чисто функционального програм-

мирования и необходимостью изменения состояний при организации парал-

лельных процессов введены указательные переменные – атомы из уникальных

указателей на списки свойств атома превращаются в указательные переменные

и рассматриваются как системные структуры, обеспечивающие разные дисци-

плины доступа к памяти и стратегии многопоточности (atom, ref, agent).

Clojure отвечает на вопрос «ГДЕ новые горизонты, в освоении которых по-

могает продуктивность и моделирующая сила языка Lisp?». Ответ опирается на

следующее.

– Универсальность символьных вычислений распространена на явный

конкретный синтаксис отображений, множеств и векторов. Введены метадан-

ные – кодированный аналог списка свойств, который может быть связан со зна-

чением или указательной переменной.

– Можно синхронизовать выполнение потоков: откладывание, ожидание,

обещание, передача, готовность, блокировка (delay, future, promise, deliver, is-

30 Похоже на реорганизацию векторов в языке APL.
31 Подобно некоторым языкам заданий и макропроцессоров.

https://ru.wikipedia.org/wiki/Параллельное_программирование

Russian Digital Libraries Journal. 2026. V. 29. No. 1

48

done?, deref), контролировать ход вычисления, а также представлять

эффективные формы циклов, не использующие стек.

– Неизменяемость данных при необходимости изменений превращена

в транзакционную память, как в базах данных, поддержаны агенты и разные

виды динамических и указательных переменных.

– Единственность результата функции дополнена возможностью проверки

утверждений об аргументах и полученных результатах, при тестировании можно

проверять инварианты функций и использовать внешние методы верификации

программ.

Диалект Clojure наследует примерно 80% особенностей языка Lisp, уточ-

няет ряд его решений для удобства представления параллельных процессов

и дополняет его заметным комплектом средств, соответствующих современной

элементной базе и поддерживающих отладку взаимодействующих процессов

и удостоверение правильности программ. Самое заметное расширение связано

с понятием «атом». Атом из неявного уникального указателя на список свойств

атома стал явной указательной переменной, позволяющей поддерживать раз-

личные дисциплины обработки памяти, возникающие в разных моделях парал-

лельных вычислений, разнообразие которых непредсказуемо велико. Кроме

того, механизм реструктуризации данных распространен на список аргументов,

что расширяет форматы определения функций, позволяет отказываться от ис-

пользования имен связанных переменных32, что удобно при генерации машин-

ного кода.

ИТОГ СРАВНЕНИЯ ДИАЛЕКТОВ

В ходе эксперимента выяснилось, что результаты сравнения языков про-

граммирования следует показывать декомпозированными по отдельным осо-

бенностям и конструкциям языка программирования. Обозначения из табл. 1–4

32 Интересно, что в свое время основатель нашей математической школы Н. Н. Лузин не

одобрял термин «связанная переменная», он пояснял, что это вообще не переменная, по-

тому что ее имя можно заменять на другое – смысл формулы не изменится. Своего термина

не предложил. Лузин Н. Н. Интеграл и тригонометрический ряд. Изд. 2-е. М.: Гостехиздат,

1951.

Электронные библиотеки. 2026. Т. 29. № 1

49

оказались достаточными для показа наиболее очевидных синтаксических, се-

мантических и прагматических различий между рассмотренными диалектами,

причем с выражением отношения наследования. Удалось показать происходив-

шее при создании диалектов изменение особенностей поддержки семантиче-

ских принципов «универсальность», «самоопределение функций» (рекурсия),

«независимость и равноправие параметров функций», «единственность резуль-

тата функции», а также форматов ветвлений, ленивых вычислений и REPL-цикла.

Кроме того, показано произошедшее изменение особенностей поддержки

принципов «гибкость границ блоков памяти» и «неизменяемость хранимых в па-

мяти значений» [23].

Отмечая различие в целях создания диалектов языка Lisp, можно заметить,

что рассмотренные диалекты обладают стабильным системным ядром, исполь-

зующим конкретный комплект структур данных и механизмов их обработки. По-

казано, что вариации структур данных и значений сводятся к пересмотру границ

между лексиконом, синтаксисом, семантикой и прагматикой языка, к различию

возможностей периода компиляции, выполнения и отладки программы и прио-

ритетов между областями видимости символов, а также к вариантам представ-

ления значения «ложь» и расширению понятия «атом» от уникального указателя

на список свойств атома до понятия «указательная переменная». Системные ре-

шения по обработке структур данных в новых диалектах из неявных уровнях сис-

темной прагматики становятся доступными сначала с помощью функций

на уровне лексикона абстрактной семантики, затем получают представление на

уровне конкретного синтаксиса. Это не нарушает функциональную эквивалент-

ность программ, абстрактное синтаксическое дерева всех диалектов имеет по-

добное списочное представление. Семантика вычислений в диалектах по-раз-

ному взаимодействует с прагматикой изменения состояний памяти, что прояв-

ляется, как правило, в именовании функций и выборе границ изменяемых дан-

ных.

Принципы и понятия функционального программирования в диалектах

языка Lisp уточнялись в зависимости от роли продуктивности программирования

и критериев качества программ в разных областях приложения. Для Scheme –

это эффективность и сохранение привычки к присваиваниям и векторам, для

Russian Digital Libraries Journal. 2026. V. 29. No. 1

50

Common Lisp – разнообразие структур данных, для Racket – создание специали-

зированных диалектов, освобождающих от нагромождения библиотек, для

Clojure – освоение многопроцессорных комплексов и распределенных информа-

ционных систем. Более подробно результаты сравнения представлены в пре-

принтах [22, 23].

Разнообразие целей и решений, принятых в рассмотренных диалектах,

позволило сформулировать особенности диалектного абстрагирования семан-

тики вычислений от семантики изменения состояний памяти. Каждый из диалек-

тов произвел определенное уточнение особенностей функционального про-

граммирования без отказа от его принципов, впервые поддержанных в реали-

зации языка Lisp. Семантические и прагматические принципы функционального

программирования (универсальность представления данных и программ, само-

применимость, равноправие параметров и единственность результатов функ-

ций, гибкость границ памти и неизменяемость хранимых значений) дополни-

лись конструкциями ветвлений для представления частичных вычислений, лени-

вых вычислений для управления временем вычислений и REPL-циклом33 для

поддержки удобной отладки программ.

Гомоиконный конкретный синтаксис поддерживает универсальность

представления данных и программ с помощью общих структур данных, удобных

для самоопределения рекурсивных функций и структур данных, границы кото-

рых могут быть заданы как частичные функции с помощью ветвлений и циклов.

Начиная с символьных представлений с помощью S-выражений языка Lisp

и списков, достаточных для моделирования любых структур данных, диалекты

предложили конкретный синтаксис для векторов, множеств и хэш-функций, при-

сутствовавших на уровне системной прагматике:

(S-выражение …) // список через пробел в языке Lisp.
(S-выражение «.» S-выражение) // пара в языке Lisp.

((S-выражение «.» S-выражение) …)

 // ассоциативный список в языке Lisp.

(индикатор S-выражение …)

 // список свойств атома в языке Lisp.

33 REPL-цикл — Read Eval Print Loop.

Электронные библиотеки. 2026. Т. 29. № 1

51

[S-выражение …]
 // группировка или вектор в диалекте Scheme.
[S-выражение …]

 // последовательность в диалектах Racket и в Clojure

#{S-выражение ... } // множество в диалекте Clojure
{ (ключ => значение) … }
 // хэш-таблица или ассоциативный список в диалекте Clojure.

На уровне трансформационной абстрактной семантики существуют раз-

ные определения функций и представления форм, результаты которых совпа-

дают на одинаковых комплектах аргументов в одинаковых контекстах. Это дает

основания для оптимизирующих эквивалентных преобразований программ,

включая исключение константных (чисто функциональное программирование)

или дублирующих вычислений, перестановочность параметров и аргументов,

вынесение подвыражений в аргументы, преобразование рекурсий в циклы, от-

ложенные или ленивые вычисления, а также различные средства проверки пра-

вильности программ, предложенные в диалекте Clojure. Развитие вариантов

REPL-цикла при отладке программ показывает целесообразность использования

частичной или полной компиляции наряду с интерпретацией без потери исход-

ного кода программы. Такие варианты предложены в диалектах Scheme, Com-

mon Lisp и Racket.

На уровне системной прагматики поддержка принципов функционального

программирования использует исключения, обработка которых необходима для

обеспечения продуктивности программирования и производительности про-

грамм. В динамике возникает переключение дисциплины функционирования

памяти и вызов вариантов мусорщика с оптимизацией. Поддержка паралле-

лизма и асинхронности привела в диалекте Clojure к расширению понятия атом

до указательной переменной, а требование производительности программ по-

влекло поддержку метаданных и транзакций.

ЗАКЛЮЧЕНИЕ

Проведенные исследования форм для представления и обзора результа-

тов сравнения наиболее популярных диалектов языка Lisp показали возмож-

ность лаконичного показа наследования их особенностей на уровне синтаксиса,

Russian Digital Libraries Journal. 2026. V. 29. No. 1

52

семантики и прагматики. Основная причина проведения такого эксперимента,

а также поиска обозримых форм и выбора кратких обозначений связана с разра-

боткой методик оценки продуктивности языка программирования и программи-

руемых решений в отличие от непосредственного измерения эффективности

и производительности программ. Произошло выделение понятия «диалектные

абстракции», удобного при декомпозиции определений языка программирова-

ния на автономные составляющие, и понятия «логическая интерпретация», до-

пускающего независимое варьирование и развитие сквозных понятий в про-

цессе эволюции ИТ с сохранением общей архитектуры языка.

Сравнение диалектов языка Lisp показывает медленное смягчение про-

граммистского скептицизма в отношении к принятым в языке Lisp решениям

и парадигме функционального программирования по мере прогресса элемент-

ной базы и развития ИТ, что видно по созданию новых языков программирова-

ния, рекламирующих включение механизмов функционального программиро-

вания как важное преимущество.

Полученные результаты образуют основу для определения номенклатуры

семантических систем языков функционального программирования. Следует от-

метить не только новые диалекты языка Lisp, но и выпуски их реализаций – 25 ав-

густа 2025 г. выпущена очередная реализация Armed Bear Common Lisp

(ABCL) [25].

При измерении мощности языков программирования как характеристики

пространства доступных процессов вычислений самыми мощными являются

языки ассемблера. Языки более высокого уровня, даже языки управления зада-

ниями в операционных системах, теряют часть такого пространства ради удоб-

ства представления процессов обработки данных и управления ими. Такая по-

теря отчасти компенсируется моделированием, влекущим снижение эффектив-

ности ради продуктивности. Диалекты Scheme, Common Lisp, Racket и Clojure об-

ладают реализацией на JVM, что говорит об их равномощности, они предостав-

ляют одно и то же пространство процессов вычислений.

Сравнение диалектов Scheme, Common Lisp, Racket и Clojure, последний

из них появился в 2007 г., показывает, что в них сохранены основные возможно-

сти языка Lisp, системные структуры данных, базовые принципы функциональ-

ного программирования и понятия с определенными вариациями на злобу дня.

Электронные библиотеки. 2026. Т. 29. № 1

53

Авторы этих диалектов четко называют свои диалекты вариантами языка Lisp.

Появление названий “Racket” и “Clojure” не отменяет роль так названных диа-

лектов в успешной адаптации языка Lisp к новым поколениям программистов

и новым возможностям аппаратуры. Знакомство с языками функционального

программирования, наследующими идеи языка Lisp, такими как Sisal, F# и Haskell

[19, 20, 26, 27], дает достаточное основание рассматривать Lisp как базовую ма-

тематику функционального программирования. Результаты их анализа выходят

за пределы настоящей статьи.

Семейство Lisp теперь является одним из старейших и наиболее влиятель-

ных семейств языков программирования, его мощность в различных источниках,

начиная с Википедий, оценивается от пятисот до тысяч языков программирова-

ния и диалектов. Кроме того, следует учесть языки функционального програм-

мирования, наследующие основные идеи языка Lisp, они постоянно разрабаты-

ваются, улучшаются и появляются новые, их число также оценивается в сотни или

тысячи. Во многих источниках Lisp называют чемпионом по числу диалектов

и наследников, хотя встречаются и утверждения, что сравнимое число диалектов

имеется у языков C/C++, Bash, Perl, Python, JavaScript, BASIC, Forth, SQL, Fortran,

Pascal, Ada, Assembler.

Следующий эксперимент по отладке методики анализа и сравнения язы-

ков программирования предполагается выполнить на материале языков функ-

ционального программирования, таких как Erlang, Sisal, F# и Haskell, рассматри-

ваемых как наследники языка Lisp. Кроме того, интересно показать результаты

сравнения представителей других долгоживущих семейств языков программи-

рования, в первую очередь это Fortran и C, сохранивших значимость до наших

дней. Отдельная задача – сравнение наших ЯП с зарубежными аналогами.

Russian Digital Libraries Journal. 2026. V. 29. No. 1

54

Благодарности

Автор искренне благодарен Андрею Валентиновичу Климову за ценные

рекомендации по улучшению стиля изложения и поиску форм для представле-

ния результатов сравнения ЯП, Николаю Вячеславовичу Шилову, Игорю Сергее-

вичу Анурееву и Борису Леонидовичу Файфелю за интерес к языку Lisp и стиму-

лирующие вопросы.

СПИСОК ЛИТЕРАТУРЫ

1. Городняя Л.В. О представлении результатов анализа языков и систем

программирования. Научный сервис в сети Интернет: труды XX Всероссийской

научной конференции (17–22 сентября 2018 г., г. Новороссийск). М.: ИПМ

им. М.В. Келдыша, 2018.

2. McCarthy J. Abrahams P. W., Edwards D. J. et al. LISP 1.5 Programming

Manual. The MIT Press, Cambridge, 1963. 106 p.

3. Dybvig K.R. The Scheme Programming Language.

https://www.scheme.com/tspl4/

4. Graham P. ANSI Common Lisp. Prentice Hall, 1996. 432 p.

5. The Racket Reference. https://docs.racket-lang.org/reference/

6. Clojure Programming. OReilly.com. Retrieved 2013-04-30.

https://cdn.oreillystatic.com/oreilly/booksamplers/9781449394707_sampler.pdf

7. Отт А. Введение в Clojure.

https://alexott.net/ru/clojure/clojure-intro/

8. Differences Clojure with other Lisps. https://clojure.org/reference/lisps/

9. Backus J.W. The syntax and semantics of the proposed international al-

gebraic language of the Zurich ACM-GAMM Conference // Proceedings of the Inter-

national Conference on Information Processing. UNESCO. 1959. P. 125–132.

10. Backus J. Can Programming Be Liberated from the von Neumann Style?

A Functional Style and Its Algebra of Programs // 1977 ACM Turing Award Lecture,

p. 621–641.

11. Mitchell R.W. LISP 2 Specifications Proposal. Stanford Artificial Intelli-

gence Laboratory Memo No. 21, Stanford, Calif., 1964.

https://www.scheme.com/tspl4/
http://cdn.oreilly.com/oreilly/booksamplers/9781449394707_sampler.pdf
https://cdn.oreillystatic.com/oreilly/booksamplers/9781449394707_sampler.pdf
https://clojure.org/reference/lisps/

Электронные библиотеки. 2026. Т. 29. № 1

55

12. Лавров С.С., Силагадзе Г.С. Входной язык и интерпретатор системы

программирования на базе языка ЛИСП для машины БЭСМ-6. М.: ИТМ и ВТ АН

СССР, 1969.

13. Landin P.J. The Mechanical Evaluation of Expression // Comput. J. 1964.

Vol. 6, No. 4. P. 308–320. https://doi.org/10.1093/comjnl/6.4.308

14. Хендерсон П. Функциональное программирование. Применение и

реализация. М.: Мир, 1983. 349 с.

15. Henderson Peter; Jones Geraint A.; Jones Simon B. The LispKit Manual.

University of Oxford Computing Lab. 1983.

https://github.com/hanshuebner/secd/tree/master/lispkit/LKIT-2

16. Michie D. 'Memo' Functions and Machine Learning" (PDF). Nature. 1968.

Vol. 218 (5136), P. 19–22. Bibcode:1968Natur.218...19M.

https://doi.org/10.1038/218019a0. S2CID 4265138

17. Strachey Ch. Fundamental Concepts in Programming Languages //

Higher-Order and Symbolic Computation. 2000. Vol. 13, No. 1–2. P. 11–49.34

18. Henderson P., Morris JH. A lazy evaluator. Symposium ACM Sigact-Sigplan

sur les principes des langages de programmation // DBLP, Proceedings of the 3rd ACM

SIGACT-SIGPLAN symposium on Principles on programming languages (POPL), 1976.

P. 95–103.

19. Душкин Р.В. Функциональное программирование на языке Haskell.

М.: ДМК Пресс, 2008. 544 с., ил.

20. Официальный сайт языка Haskell – "О языке"

http://haskell.org/aboutHaskell.html

21. From PLT Scheme to Racket. Racket-lang.org. Retrieved 2011-08-17.

https://docs.racket-lang.org/guide/intro.html Welcome to Racket

22. Городняя Л.В. Lisp и его диалекты. Новосибирск, препринт, 2025.

https://www.iis.nsk.su/repository/gorod.14408

23. Городняя Л.В. Формы для показа результатов сравнения языков про-

граммирования на примере диалектов языка LISP.

34 Предварительные публикации: Strachey Christopher. Programming Languages and Their
Definition; Strachey Christopher. Fundamental Concepts in Programming Languages, 1967

https://ru.wikipedia.org/w/index.php?title=Peter_Landin&action=edit&redlink=1
https://doi.org/10.1093%2Fcomjnl%2F6.4.308
https://ru.wikipedia.org/w/index.php?title=The_Computer_Journal&action=edit&redlink=1
https://ru.wikipedia.org/w/index.php?title=The_Computer_Journal&action=edit&redlink=1
https://doi.org/10.1093%2Fcomjnl%2F6.4.308
https://github.com/hanshuebner/secd/tree/master/lispkit/LKIT-2
https://www.cs.utexas.edu/users/hunt/research/hash-cons/hash-cons-papers/michie-memo-nature-1968.pdf
https://en.wikipedia.org/wiki/Nature_(journal)
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/1968Natur.218...19M
https://doi.org/10.1038%2F218019a0
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:4265138
http://racket-lang.org/new-name.html
https://docs.racket-lang.org/guide/intro.html

Russian Digital Libraries Journal. 2026. V. 29. No. 1

56

www.iis.nsk.su/files/preprint/gorodnyaya-2025-forms_0.pdf?ysclid=

mk9e9ot2mp144838343

24. Городняя Л.В. Сравнение диалектов языка Lisp // Материалы конфе-

ренции «Научный сервис в сети Интернет», 2025.

https://keldysh.ru/abrau/2025/temp/17.pdf

25. Armed Bear Common Lisp (ABCL). https://armedbear.common-lisp.dev/

26. Евстигнеев В.А., Городняя Л.В., Густокашина Ю.В. Язык функцио-

нального программирования SISAL // В сб. «Интеллектуализация и качество про-

граммного обеспечения». Новосибирск, 1994. С. 21–42.

27. Сошников Д.В. Программирование на F#. М.: ДМК Пресс, 2011. 192 с.

FORMS FOR DISPLAYING THE RESULTS OF COMPARISON

OF PROGRAMMING LANGUAGES USING THE EXAMPLE OF DIALECTS

OF THE LISP LANGUAGE

L. V. Gorodnyaya[0000-0002-4639-9032]

A. P. Ershov Institute of Informatics Systems, Novosibirsk, Russia

Novosibirsk State University, Novosibirsk, Russia

lidvas@gmail.com

Abstract

This article focuses on developing forms for presenting the results of analyzing

and comparing the characteristics of programming languages, systems, and para-

digms. The proposed form is demonstrated through a comparison of the Lisp lan-

guage, its most successful dialects (Scheme, Common Lisp, Racket, Clojure), and the

functional programming paradigm across different levels of language and system def-

inition. The form allows for a concise presentation of the inheritance of several fea-

tures of the Lisp language and their evolution in its dialects, at the levels of concrete

syntax, abstract semantics, and implementation pragmatics."

Keywords: programming language, Lisp, Scheme, Common Lisp, Racket,

Clojure, functional programming, comparison of programming languages, concrete

syntax, abstract semantics, implementation pragmatics.

https://keldysh.ru/abrau/2025/temp/17.pdf
https://armedbear.common-lisp.dev/

Электронные библиотеки. 2026. Т. 29. № 1

57

REFERENCES

1. Gorodnyaya L.V. O predstavlenii rezul'tatov analiza yazykov i sistem pro-

grammirovaniya. Nauchnyy servis v seti Internet: trudy XX Vserossiyskoy nauchnoy

konferentsii (17–22 sentyabrya 2018 g., g. Novorossiysk). M.: IPM im. M.V. Keldysha,

2018.

2. McCarthy J. Abrahams P. W., Edwards D. J. et al. LISP 1.5 Programming

Manual. The MIT Press, Cambridge, 1963. 106 p.

3. Dybvig K.R. The Scheme Programming Language.

URL: https://www.scheme.com/tspl4/

4. Graham P. ANSI Common Lisp. Prentice Hall, 1996. 432 p.

5. The Racket Reference. URL: https://docs.racket-lang.org/reference/

6. Clojure Programming. OReilly.com. Retrieved 2013-04-30. URL:

https://cdn.oreillystatic.com/oreilly/booksamplers/9781449394707_sampler.pdf

7. Ott A. Vvedeniye v Clojure.

URL: https://alexott.net/ru/clojure/clojure-intro/

8. Differences Clojure with other Lisps.

URL: https://clojure.org/reference/lisps/

9. Backus J.W. The syntax and semantics of the proposed international al-

gebraic language of the Zurich ACM-GAMM Conference // Proceedings of the Inter-

national Conference on Information Processing. UNESCO. 1959. P. 125–132.

10. Backus J. Can Programming Be Liberated from the von Neumann Style?

A Functional Style and Its Algebra of Programs // 1977 ACM Turing Award Lecture,

p. 621–641.

11. Mitchell R.W. LISP 2 Specifications Proposal. Stanford Artificial Intelli-

gence Laboratory Memo No. 21, Stanford, Calif., 1964.

12. Lavrov S.S., Silagadze G.S. Vkhodnoy yazyk i interpretator sistemy pro-

grammirovaniya na baze yazyka LISP dlya mashiny BESM-6. M.: ITM i VT AN SSSR,

1969.

13. Landin P.J. The Mechanical Evaluation of Expression // Comput. J. 1964.

Vol. 6, No. 4. P. 308–320. https://doi.org/10.1093/comjnl/6.4.308

14. Khenderson P. Funktsional'noye programmirovaniye. Primeneniye i real-

izatsiya = Functional Programming. M.: Mir, 1983. 349 p.

https://www.scheme.com/tspl4/
http://cdn.oreilly.com/oreilly/booksamplers/9781449394707_sampler.pdf
https://cdn.oreillystatic.com/oreilly/booksamplers/9781449394707_sampler.pdf
https://clojure.org/reference/lisps/
https://clojure.org/reference/lisps/
https://clojure.org/reference/lisps/
https://clojure.org/reference/lisps/
https://clojure.org/reference/lisps/
https://clojure.org/reference/lisps/
https://clojure.org/reference/lisps/
https://clojure.org/reference/lisps/
https://clojure.org/reference/lisps/
https://clojure.org/reference/lisps/
https://ru.wikipedia.org/w/index.php?title=Peter_Landin&action=edit&redlink=1
https://doi.org/10.1093%2Fcomjnl%2F6.4.308
https://ru.wikipedia.org/w/index.php?title=The_Computer_Journal&action=edit&redlink=1
https://ru.wikipedia.org/w/index.php?title=The_Computer_Journal&action=edit&redlink=1
https://doi.org/10.1093%2Fcomjnl%2F6.4.308

Russian Digital Libraries Journal. 2026. V. 29. No. 1

58

15. Henderson P., Jones G.A.; Jones S.B. The LispKit Manual. University of Ox-

ford Computing Lab. 1983.

URL: https://github.com/hanshuebner/secd/tree/master/lispkit/LKIT-2

16. Michie D. 'Memo' Functions and Machine Learning" (PDF). Nature. 1968.

Vol. 218 (5136), P. 19–22. Bibcode:1968Natur.218...19M.

https://doi.org/10.1038/218019a0. S2CID 4265138

17. Strachey Ch. Fundamental Concepts in Programming Languages //

Higher-Order and Symbolic Computation. 2000. Vol. 13, No. 1–2. P. 11–49.

18. Henderson P., Morris JH. A lazy evaluator. Symposium ACM Sigact-Sigplan

sur les principes des langages de programmation // DBLP, Proceedings of the 3rd ACM

SIGACT-SIGPLAN symposium on Principles on programming languages (POPL), 1976.

P. 95–103.

19. Dushkin R.V. Funktsional'noye programmirovaniye na yazyke Haskell / Gl.

red. D.A. Movchan. M.: DMK Press, 2008. 544 p.

20. Ofitsial'nyy sayt yazyka Haskell. "O yazyke"

http://haskell.org/aboutHaskell.html

21. From PLT Scheme to Racket. Racket-lang.org. Retrieved 2011-08-17.

URL: https://docs.racket-lang.org/guide/intro.html Welcome to Racket

22. Gorodnyaya L.V. Lisp i yego dialekty. Novosibirsk, preprint, 2025.

URL: https://www.iis.nsk.su/repository/gorod.14408

23. Gorodnyaya L.V. Formy dlya pokaza rezul'tatov sravneniya yazykov pro-

grammirovaniya na primere dialektov yazyka LISP.

URL: www.iis.nsk.su/files/preprint/gorodnyaya-2025-

forms_0.pdf?ysclid=mk9e9ot2mp144838343

24. Gorodnyaya L.V. Sravneniye dialektov yazyka Lisp // Materialy konfer-

entsii "Nauchnyy servis v seti Internet", 2025.

URL: https://keldysh.ru/abrau/2025/temp/17.pdf

25. Armed Bear Common Lisp (ABCL). URL: https://armedbear.common-

lisp.dev/

26. Yevstigneyev V.A., Gorodnyaya L.V., Gustokashina Yu.V. Yazyk funktsion-

al'nogo programmirovaniya SISAL // v sb. «Intellektualizatsiya i kachestvo pro-

grammnogo obespecheniya». Novosibirsk, 1994. S. 21–42.

27. Soshnikov D.V. Programmirovane na F#. M.: DMK Press, 2011. 192 p.

https://github.com/hanshuebner/secd/tree/master/lispkit/LKIT-2
https://www.cs.utexas.edu/users/hunt/research/hash-cons/hash-cons-papers/michie-memo-nature-1968.pdf
https://en.wikipedia.org/wiki/Nature_(journal)
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/1968Natur.218...19M
https://doi.org/10.1038%2F218019a0
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:4265138
http://racket-lang.org/new-name.html
http://racket-lang.org/new-name.html
https://docs.racket-lang.org/guide/intro.html
https://www.iis.nsk.su/repository/gorod.14408
https://armedbear.common-lisp.dev/
https://armedbear.common-lisp.dev/

Электронные библиотеки. 2026. Т. 29. № 1

59

СВЕДЕНИЯ ОБ АВТОРЕ

ГОРОДНЯЯ Лидия Васильевна – к. ф.-м. н., старший науч-

ный сотрудник Института систем информатики им. А.П. Ершова СО

РАН, доцент Новосибирского государственного университета, спе-

циалист в области системного программирования и образователь-

ной информатики.

Lidia Vasiljevna GORODNYAYA – Senior Researcher at the

A. P. Ershov Institute of Informatics Systems, Siberian Branch of the

Russian Academy of Sciences, Associate Professor at the Novosibirsk

State University, specialist in system programming and educational

informatics.

email: gorod@iis.nsk.su

ORCID: 0000-0002-4639-9032

Материал поступил в редакцию 6 января 2026 года

https://orcid.org/0000-0002-4639-9032#_blank

