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Аннотация 

Предложен метод построения инвариантных к масштабу представлений 

временных рядов розничной выручки на базе трехбарной (по трем соседним 

периодам) геометрии Драммонда (DG), расширенной мульти-таймфреймовым 

контекстом (день, частичная календарная неделя и скользящая 7-дневка). На 

этих «патчах» выполнено self-supervised предобучение по схеме Joint-Embedding 

Predictive Architecture (JEPA) со спатио-темпоральным маскированием, после че-

го модель дообучена с выходными слоями, оценивающими неопределенность, 

для прогноза на следующий день и следующую неделю. Проанализированы 

свойства аффинной инвариантности признаков и идентифицируемости недель-

ной фазы; эмпирически продемонстрировано улучшение по сравнению с силь-

ными базовыми моделями на реальных данных. 

Ключевые слова: геометрия Драммонда, Joint-Embedding Predictive 

Architecture (JEPA), временные ряды, Open-High-Low-Close (OHLC), розничная 

торговля, краткосрочный прогноз, самообучение. 

ВВЕДЕНИЕ 

Современные розничные временные ряды характеризуются высокой ва-

риативностью, выраженной недельной сезонностью и наличием шума, что со-

здает существенные сложности для краткосрочного прогнозирования ключевых 

метрик: выручки, количества кассовых чеков и среднего чека [1, 2]. Традицион-

ные методы, такие как ARIMA и экспоненциальное сглаживание, могут демон-

стрировать недостаточную точность на нелинейных зависимостях и при резких 

изменениях режимов [3]. Нейросетевые подходы, включая N-BEATS и Temporal 
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Fusion Transformer (TFT), показывают лучшие результаты, но требуют больших 

объемов данных и могут быть неустойчивы к изменениям масштаба и сдвигам 

уровня ряда [4, 5]. 

В настоящей работе рассмотрена комбинация классических технических 

индикаторов и современных методов самообучающихся представлений. В каче-

стве основы для признаков использована геометрия Драммонда (DG) [6] – набор 

интерпретируемых уровней, отражающих локальную геометрию ценового дви-

жения, обобщенную на случай произвольных временных рядов. Для обучения 

представлений применена архитектура JEPA (Joint-Embedding Predictive 

Architecture), показавшая свою эффективность в задачах компьютерного зрения 

и обработки сигналов [7, 8]. Ключевая идея JEPA – предсказание представлений 

одних частей данных по контексту других, что позволяет модели извлекать 

устойчивые скрытые (латентные) зависимости без реконструкции входных дан-

ных. 

Перечислим основные полученные результаты. 

1. Предложена единая многошкальная по времени (мульти-

таймфреймовая) постановка задачи для трех каналов розничных данных (выруч-

ка, чеки, средний чек) с использованием недельно-базисных приращений и 

OHLC-агрегирования, где Open – цена открытия, High – максимальная цена, Low 

– минимальная цена и Close – цена закрытия. 

2. Разработан метод построения аффинно-инвариантных фрагментов 

данных (Drummond-патчей), объединяющих информацию с дневного и двухне-

дельных горизонтов. 

3. Адаптирована и доработана схема JEPA-предобучения для временных 

рядов с пространственно-временным маскированием и позиционным кодиро-

ванием, учитывающим недельную фазу. 

4. На реальных данных выполнено экспериментальное сравнение пред-

ложенного подхода с рядом сильных базовых моделей, показавшее статистиче-

ски значимое улучшение качества на краткосрочных горизонтах: следующий 

день (D+1) и следующая неделя (W+1). Эффективность самообучения для роз-

ничных продаж, таким образом, получила дополнительное подтверждение [9]. 
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ДАННЫЕ И ОБОЗНАЧЕНИЯ 

Использованы три канала, отражающие изменение динамики базовых 

розничных метрик: 

 GainVal – изменение выручки; 

 CheckCount – изменение количества покупок (кассовых чеков); 

 ARVal – изменение среднего чека (Average Receipt Value). 

Пусть Vt – выручка в день t, Nt  – число кассовых чеков и At = Vt/Nt – 

средний чек. Для подавления сезонности по дням недели используем недельно-

базисные приращения (WeekBasis) в виде лог-отношений: 

ΔWXt = log(Xt + ε) − log(X(t−7) + ε),   где X ∈ {V, N, A},  ε > 0.         (1) 

По умолчанию в тексте под именами каналов понимаем именно эти 

WeekBasis-приросты:  

GainValt ≡ ΔWVt,   CheckCountt ≡ ΔWNt,   ARValt ≡ ΔWAt. 

Для задач Day(t) может использоваться дневной аналог недельного приращения 

(1): 

ΔDXt = log(Xt + ε) − log(Xt−1 + ε). 

Дополнительно используем OHLC-агрегирование в заданном окне [a, b]: 

OHLC[a,b](y)   =   (O, H, L, C)   =   (ya,  max
t∈[a,b]

yt,   min
t∈[a,b]

yt,  yb). 

Рассмотрим два недельных варианта окон для OHLC над приращениями 

ΔWX: 

 Week_cal: календарная неделя (понедельник – воскресенье), содер-

жащая t; 

 Week_roll: скользящее окно [t − 6,  t] из 7 дней. 

На рис. 1 проиллюстрировано построение OHLC для канала GainVal; анало-

гично могут быть построены OHLC для каналов CheckCount и ARVal. 
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Рис. 1. Схема построения OHLC по WeekBasis-приростам выручки (GainVal). 

1. МЕТОД: DRUMMOND-ПАТЧ И JEPA-ПРЕДОБУЧЕНИЕ 

1.1. Построение мульти-таймфреймового Drummond-патча 

Геометрия Драммонда (DG) определяет набор уровней на основе цен 

OHLC трех последовательных временных интервалов (баров) [6]. Для окна из 

трех баров (Hi, Li, Ci), i ∈ {0,1,2} (0 – текущий) определим базовые уровни: 

pivoti = (Hi + Li + Ci) 3⁄ , 

h3 = (H0 + H1 + H2) 3⁄ ,   

l3 = (L0 + L1 + L2) 3⁄ , 

pld = (pivot0 + pivot1 + pivot2) 3⁄ , 

rbird = (pivot
0

+ pivot1 + C0) 3⁄ . 

На их основе вычислим производные уровни, такие как et1 = 2 pld − l3, eb1 =

2 pld − h3 и др. [6]. 

Патч Pt на конец дня t включает DG-уровни и z-координаты (нормализо-

ванные значения) для трех временных масштабов (тайм фреймов) τ: 
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 Day: последние три дня [t − 2, t]; 

 Week_cal: две прошлые полные календарные недели + текущая частич-

ная (с понедельника по день 𝑡) (Mon…𝑡); 

 Week_roll: три скользящих окна  [t − 20 … t − 14],  [t − 13. . . t − 7],   

[t − 6. . . t]. 

Для обеспечения аффинной инвариантности используем нормализацию 

внутри каждого окна [a, b] по High/Low для каждой компоненты j: 

z[a,b](xt)(j)   =  
xt

(j)
−Lj

max{Hj−Lj, ε}
,                                         (2) 

где Hj = maxt∈[a,b]xt
(j)

, Lj = mint∈[a,b]xt
(j)

. 

Лемма 1 (Аффинная инвариантность нормализации). Для любого аф-

финного преобразования x ↦ ax + b с a > 0 и любого окна [a,b] выполняется  

z[a,b](ax + b) = z[a,b](x). 

Доказательство следует непосредственно из определения (2). 

Патч также обогащается межмасштабными признаками (позиция дневного 

бара относительно недельных уровней) и календарными мета-признаками (день 

недели, признак незавершенной (частичной) недели). Все расчеты произведены 

строго на исторических данных без утечки из будущего. 

1.2. JEPA-обучение для розничных OHLC-представлений 

Архитектура обучения, представленная на рис. 2, следует принципам JEPA 

[7, 8] в контексте задач временных рядов [10]. 
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Рис. 2. Retail-JEPA: схема обучения и предсказания для мультишкальных OHLC-

данных. 

Пояснения к рис. 2. 

Разбиение на фрагменты и перемешивание каналов (Patchify+Shuffle 

Channels). Вход – многоканальные розничные временные ряды формата Катего-

рия × Метрика × OHLC × Тайм фрейм.  

Метрики: {GainVal, CheckCount, ARVal}; OHLC: {O,H,L,C}; тайм фреймы: {In-

tro, Day, Week_cal, Week_roll}. Поток разрезан на компактные DG-патчи (трех-

барные блоки); каналы могут перемешиваться для регуляризации. 

Кодировщик наблюдаемой части (Observation Encoder) fθ. Незамаскиро-

ванная (наблюдаемая) часть патча кодируется кодировщиком (энкодером) 

наблюдения fθ в скрытое представление (латент) sx. Во вход уже заложена DG-

нормализация (X − PLdot)/Δ, что делает признаки аффинно-инвариантными и 

снижает влияние локальных амплитуд. 

EMA (экспоненциальное скользящее среднее) → Target Encoder 𝐟‾𝜽. Целе-

вой кодировщик (таргет-энкодер) f‾θ есть экспоненциально сглаженная (EMA) ко-

пия параметров fθ. Он кодирует скрытые блоки (замаскированные регионы пат-
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ча) в целевые скрытые представления (таргет-латенты) sy
τ с остановкой градиен-

та. Это стабилизирует целевые представления и предотвращает вырождение 

представлений (коллапс). 

Позиционное обусловливание (Positional Conditioning). К латенту sx до-

бавляются позиционные признаки: (а) Temporal – день недели (DOW), си-

нус/косинус-время, флаг partial-week (неполная неделя обрезана на текущем 

дне t); (б) Retail Gradient Positioning – векторные представления (эмбеддинги) 

структурных осей (категория товара, тип метрики, OHLC-канал, тип таймфрейма, 

Week_cal vs Week_roll). Эти признаки сообщают модели фазу недели (например, 

пятница/суббота пик спроса) и контекст тайм фрейма. 

Предсказывающие головы/модули (Predictors) 𝐠𝛟. Небольшие прогнози-

рующие (предикторные) головы gϕ (ViT/MLP-блоки) по объединенному пред-

ставлению строят оценки латентов скрытых целей: Target A: дневной блок Day(t); 

Target B: Week_cal (календарная неделя Mon…t, обрезанная на текущем дне); 

Target C: Week_roll (скользящее окно t–6…t). Выходы обозначены как ŝy
τ. 

Предсказанные скрытые представления целей (Predicted Target Latents). 

ŝy
τ – предсказанные латентные представления целевых (скрытых) блоков в про-

странстве f‾θ. Мы восстанавливаем напрямую не сами ряды, а их латенты, что 

подчеркивает структуру зависимостей «день ↔ неделя» и улучшает переноси-

мость признаков к головам прогноза D+1/W+1. 

Пространственно-временное скрытие (Spatiotemporal Masking). Приме-

няем комбинированную маску без доступа к будущему: 

α Cross-Channel – скрываем набор каналов (например, все каналы 

Week_cal или часть OHLC/метрик); 

β Cross-Time – скрываем целиком временной блок (например, весь день t); 

γ Double-Cross – одновременное скрытие по времени и каналам (напри-

мер, Day(t)+Week_cal). 

Для Week_cal берем только данные Mon…t; для Week_roll – строго окно  

t–6…t, т. е. информация из будущих дней не используется. 

Функция потерь JEPA (JEPA Loss). Обучение идет по L2-расхождению меж-

ду предсказанными и таргет-латентами: LJEPA = ∑ ∥ ŝy
τ − sy

τ ∥2
2

τ . Параметры f‾θ 
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обновляются только через EMA, а не напрямую градиентом, что стабилизирует 

целевое пространство. 

Пусть Pt =   {pt
(k)

}k=1
K  – набор патчей вокруг момента t. Применим двоич-

ную маску M ⊆ {1, … , K}, разделяющую P𝑡 на контекст (наблюдаемую часть) P𝑡
\M

 

и таргет (замаскированную часть) P𝑡
M. 

Контекстный энкодер fθ преобразует наблюдаемую часть в латентное 

представление sx = fθ(P𝑡
\M

). Целевой энкодер  f‾θ, являющийся экспоненциаль-

но сглаженной (EMA) копией fθ, обрабатывает исходный, незамаскированный 

патч P𝑡 и извлекает эталонные представления sy
τ = f‾θ (Pt

M) для тех его частей, ко-

торые в данном примере обучения соответствуют маске M и тайм фрейму τ. Гра-

диент через f‾θ не пропускается (stop-gradient). 

Предиктор gϕ, получая на вход sx и позиционные признаки (день недели, 

тип тайм фрейма), предсказывает латенты целевых патчей:  ŝy
τ = gϕ(sx, τ).  

Целевая функция обучения – это минимизация L2-расстояния между пред-

сказанными и эталонными скрытыми представлениями (латентными вектора-

ми): 

LJEPA(θ, ϕ)   =  𝔼 [ ∥   gϕ(fθ(Pt
\M

)) − sg(f‾θ(Pt
M))   ∥2

2 ],   

где Pt
M обозначает часть исходного фрагмента данных (патча), соответствующую 

схеме маскирования M (какие части входа скрываются), математическое ожида-

ние берем по t, маскам M и весам wτ. 

В соответствии с теорией оптимального прогнозирования, это оптималь-

ный предиктор в таком сценарии стремится к условному математическому ожи-

данию целевых представлений при данном контексте. 

2. ЭКСПЕРИМЕНТЫ 

2.1. Данные и настройка эксперимента 

Эксперименты проводились на реальных данных розничной сети за пери-

од с 2020 по 2025 г. Были использованы данные по двум товарным категориям: 

пиво (Beer) и чай/кофе/какао (TeaCoffeeCocoa). Прогноз строился для трех кана-

лов: GainVal, CheckCount, ARVal. Выборка была разделена на обучающую (2020–
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2024), проверочную (I квартал 2025 г.) и тестовую (II квартал 2025 г.) части 

с соблюдением временного порядка. 

2.2. Детали реализации 

Энкодер fθ и предиктор gϕ были реализованы на основе трансформерной 

архитектуры с 4 слоями, 8 «головами» механизма внимания (параллельными 

каналами attention) и размерностью скрытого состояния 256. Размерность ла-

тентного представления s = 128. Вероятность маскирования патча – 30%. Коэф-

фициент EMA (θ̄) для целевого энкодера – 0.99. Обучение проводилось оптими-

затором AdamW со скоростью обучения (learning rate) 10-4 и размером мини-

пакета данных (батча) 128 в течение 100 эпох. Предобучение JEPA заняло при-

близательно два дня на графическом ускорителе GPU NVIDIA V100. После 

предобучения к латентным представлениям добавлялись простые выходные 

слои, оценивающие распределение будущих значений (два полносвязных слоя), 

и модель дообучалась на задаче прогнозирования. 

2.3. Модели и метрики 

Предложенный метод (JEPA+Heads) сравнивался со следующими бэйзлай-

нами: 

 SeasonalNaive: наивный прогноз с недельной сезонностью; 

 Ridge/LightGBM: линейная модель и градиентное усиление (бустинг) 

на табличных признаках, лежащие в основе современных ансамблевых решений 

[11]; 

 N-BEATS/N-HiTS: современные нейросетевые модели для прогнозиро-

вания временных рядов [4]; 

 TFT: Temporal Fusion Transformer [5]. 

С целью оценки вкладов компонентов (ablation study) были также проте-

стированы: 

 LightGBM (DG-признаки): LightGBM, обученный на сконструированных 

Drummond-патчах; 

 TFT (DG-признаки): модель TFT, обученная на тех же патчах с DG-

признаками сквозным образом (end-to-end); 
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 JEPA+Heads (Raw Features): наш метод, но на сырых недельных прира-

щениях без DG-обработки. 

Целями прогнозирования были: 

 D+1: прогноз дневного приращения ΔDX(t+1); 

 W+1: прогноз OHLC по ΔWX на следующей неделе. 

Использовались следующие метрики: симметричная средняя абсолютная 

процентная ошибка (sMAPE), средняя абсолютная масштабированная ошибка 

(MASE), для оценки статистической значимости различий применялся тест Ди-

болда – Мариано [12]. 

2.4. Результаты и их обсуждение 

Основные результаты, усредненные по всем каналам и категориям, пред-

ставлены в табл. 1.  

Табл. 1. Основные результаты на GainVal/CheckCount/ARVal: усредненные ошиб-

ки (меньше – лучше). 

Модель 
sMAPE 

(D+1) 

sMAPE 

(W+1) 

MASE 

(D+1) 

MASE 

(W+1) 

SeasonalNaive 21.8 24.9 1.00 1.00 

Ridge / LightGBM 19.6 22.3 0.92 0.95 

N-BEATS / N-HiTS 18.0 20.5 0.86 0.90 

TFT 17.2 19.9 0.84 0.88 

JEPA+Heads 

(предл.) 
14.9 17.6 0.76 0.82 

 

Предложенный метод JEPA+Heads показал наилучшие результаты по всем 

метрикам на обоих горизонтах прогноза. Улучшение по сравнению с лучшим 

из бэйзлайнов (TFT) составило около 13% по sMAPE на горизонте D+1 и 11% 
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на горизонте W+1. Результаты теста Диболда – Мариано подтвердили статисти-

ческую значимость улучшений (значение p-value против модели TFT составило 

0.003 для D+1 и 0.007 для W+1). Анализ разбивки результатов по отдельным ка-

налам и категориям показал согласованные улучшения, с максимальным выиг-

рышем на канале GainVal (15.2% на D+1). 

Результаты ablation study (табл. 2) показывают вклад каждого компонента 

метода. LightGBM на DG-признаках уже демонстрирует улучшение над LightGBM 

на сырых данных, что подтверждает полезность самих Drummond-патчей. TFT, 

обученная на DG-признаках, показывает результат, близкий к оригинальной TFT, 

что говорит о сложности прямого использования этих признаков 

без специального предобучения. Наш метод без DG-признаков (JEPA+Heads (Raw 

Features)) уступает полной модели, но все же превосходит TFT, что доказывает 

эффективность JEPA-предобучения. Наилучший результат достигается только 

при совместном использовании DG-признаков и JEPA-предобучения. 

Табл. 2. Исследование методом абляции: sMAPE на горизонте D+1 (усреднено). 

Модель sMAPE (D+1) 

LightGBM (Raw Features) 19.6 

LightGBM (DG-признаки) 18.1 

TFT (Raw Features) 17.2 

TFT (DG-признаки) 17.4 

JEPA+Heads (Raw Features) 16.0 

JEPA+Heads (DG-признаки, полный метод) 14.9 

Эффективность предложенного метода объясняется сочетанием аффинно-

инвариантных DG-признаков, которые устойчивы к изменениям масштаба ряда, 

и JEPA-предобучения, которое позволяет извлекать информативные представ-

ления, согласованные между различными временными горизонтами. 
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ЗАКЛЮЧЕНИЕ 

Представлен метод прогнозирования розничных временных рядов, соче-

тающий построение мульти-таймфреймовых Drummond-патчей и self-supervised 

предобучение по схеме JEPA, когда целевые сигналы формируются автоматиче-

ски из исходных данных. Ключевыми особенностями метода являются аффинно-

инвариантная нормализация признаков, пространственно-временное маскиро-

вание патчей и использование EMA-таргет энкодера для стабилизации обучения. 

Эксперименты на реальных данных показали, что предложенный подход 

статистически значимо превосходит сильные бэйзлайны на горизонтах прогноза 

D+1 и W+1. Исследование методом абляции подтвердило важность каждого 

компонента метода. Полученные результаты свидетельствуют о перспективно-

сти метода для практического применения в задачах операционного планирова-

ния в розничной торговле. 

Основными ограничениями работы являются локальность трехбарного 

анализа DG, зависимость от схемы маскирования и отсутствие учета внешних 

факторов (праздники, акции). Перспективными направлениями дальнейших ис-

следований являются интеграция внешних признаков, разработка более слож-

ных стратегий маскирования и масштабирование метода на большее число то-

варных категорий. 
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Abstract 

We propose a method for constructing scale-invariant representations of retail 

revenue time series based on three-bar Drummond Geometry (DG) computed over 

three adjacent periods, extended with a multi-timeframe context (day, partial calen-

dar week, and a rolling 7-day window). Self-supervised pre-training on these “patch-

es” is performed using a Joint-Embedding Predictive Architecture (JEPA) with spatio-

temporal masking, followed by fine-tuning with output heads that quantify predictive 

uncertainty for next-day and next-week forecasts. The work analyzes the properties 

of affine invariance of the features and the identifiability of the weekly phase; empiri-

cal improvement over strong baseline models on real-world data is demonstrated. 

Keywords: Drummond Geometry, Joint-Embedding Predictive Architecture 

(JEPA), time series, Open-High-Low-Close (OHLC), retail, short-term forecasting, self-

supervised learning. 
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