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Аннотация  

Представлен подход к разработке интеллектуального сервиса мультимо-

дального мониторинга области наблюдения с использованием больших 

нейросетевых моделей. Предлагаемое решение способно анализировать разно-

родные данные: видеопотоки, сигналы датчиков окружающей среды (темпера-

тура, влажность и пр.) и журналы событий – для получения целостной картины 

происходящего. В качестве основных инструментов задействованы крупные язы-

ковые и визуальные модели (например, LLaMA, MiniCPM‑V и др.), развернутые 

локально с помощью платформы Ollama, что обеспечивает автономную и без-

опасную обработку информации без необходимости передачи данных на уда-

ленные сервера. Разработан прототип системы, работающий в офлайн-режиме 

и способный выявлять критические ситуации, аномальные отклонения от нормы 

и контекстно значимые события в наблюдаемой зоне. Описана методика фор-

мирования тестовых сценариев и проведения качественной оценки работы мо-

дели по метрикам F1-мера, Precision, Recall. Результаты экспериментов подтвер-

дили применимость мультимодальных моделей для решения задач монито-

ринга: прототип успешно распознает сложные паттерны поведения и демон-

стрирует потенциал больших моделей в построении адаптивных и масштабиру-

емых систем наблюдения.  
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торинг, Ollama, большие языковые модели, отслеживание активностей, ви-

деоаналитика, искусственный интеллект. 
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ВВЕДЕНИЕ 

В современном мире наблюдается стремительный рост объема данных, 

генерируемых различными сенсорами, системами видеонаблюдения и другими 

устройствами интернета вещей. Это стимулирует развитие интеллектуальных си-

стем, которые все чаще применяются для анализа поведенческих и ситуацион-

ных паттернов в реальном времени. Одним из перспективных направлений 

в этой области является мультимодальный мониторинг – анализ информации, 

поступающей одновременно из различных источников (видео, датчики, логи 

и т. д.) [1]. Благодаря объединению разнородных данных такой подход позво-

ляет получить более полную и достоверную картину происходящего за счет пе-

рекрестной верификации сведений из разных модальностей. Под областью 

наблюдения в контексте настоящей работы понимается ограниченное простран-

ство (физическое или логическое), в котором ведется автоматизированное от-

слеживание активности. Это может быть помещение, коридор, производствен-

ный участок или виртуальная зона, которая контролируется с помощью видео-

камер, сенсоров либо систем логирования событий. 

Традиционные системы безопасности и мониторинга, как правило, осно-

ваны на сигнатурном анализе и ручной настройке правил срабатывания. Они эф-

фективно выявляют известные угрозы, но могут не замечать новые или нетипич-

ные ситуации. В отличие от таких подходов, интеллектуальный сервис, предла-

гаемый в настоящей работе, использует возможности больших нейросетевых 

моделей, как языковых, так и визуальных, для автономного анализа происходя-

щих событий. Большие языковые модели (Large Language Models, LLM) и совре-

менные модели компьютерного зрения (Vision-модели) демонстрируют высо-

кую эффективность в самых различных задачах: обработке естественного языка, 

распознавании образов, анализе временных рядов и т. д. Их применение в си-

стемах мониторинга позволяет автоматизировать распознавание сложных пове-

денческих паттернов и потенциально опасных действий, что ранее требовало 

значительных вычислительных ресурсов и вмешательства человека [2]. В проак-

тивных системах кибербезопасности похожие методы уже используются для по-

иска аномалий, не выявляемых стандартными средствами защиты [3]. Под ак-
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тивностью в общем случае понимается любое значимое изменение в наблюда-

емой зоне – будь то событие, зафиксированное системой логирования, либо 

действие, зафиксированное на видеокамере. 

Настоящая работа направлена на создание прототипа интеллектуальной 

системы мониторинга, способной локально (на персональном устройстве) ана-

лизировать мультимодальные данные активности и выявлять важные события. 

Особое внимание уделено архитектуре и идее системы, основанной на внедре-

нии больших предобученных моделей для анализа нескольких типов данных од-

новременно, с акцентом на автономность и безопасность обработки. Предвари-

тельные результаты работы были представлены в виде доклада на научной кон-

ференции «Научный сервис в сети Интернет» [4]; в настоящей статье эти матери-

алы существенно расширены и углублены. Более подробно рассмотрены струк-

тура предлагаемого решения, используемые модели и методы, эксперимен-

тальные сценарии и полученные результаты.  

1. ОБЗОР СУЩЕСТВУЮЩИХ РЕШЕНИЙ 

Для эффективного отслеживания активностей в сложных условиях требу-

ется анализировать информацию из различных источников: видеопотоки, си-

стемные логи, показания датчиков, а также данные, генерируемые пользовате-

лями (User Generated Content). Современные решения предлагают использовать 

для этого предобученные большие нейросетевые модели, способные извлекать 

значимые паттерны из разнородных входных данных [5]. В области компьютер-

ного зрения широко применяются глубокие сверточные нейронные сети и транс-

формеры Vision Transformer для распознавания действий на видео и классифи-

кации поведения людей в режиме реального времени [6]. Например, решения 

на базе CNN и Vision Transformer успешно идентифицируют различные виды че-

ловеческой активности на видеозаписях (ходьба, бег, падение и т. п.) и могут об-

наруживать отклонения от нормы [7]. 

Для анализа последовательностей сигналов носимых и окружающих сен-

соров (акселерометров, гироскопов, датчиков среды) применяют рекуррентные 

архитектуры (LSTM/GRU) или трансформеры, обученные на больших массивах 

данных о движениях людей. Такие модели способны выявлять характерные по-



Russian Digital Libraries Journal. 2026. V. 29. No. 1 
 

_____________________________________________________________________ 

 

126 

следовательности сигналов, соответствующие определенным видам активно-

сти, и обнаруживать нетипичные паттерны, сигнализирующие о возможном ин-

циденте [7]. В частности, в задачах распознавания человеческой активности 

(Human Activity Recognition, HAR) по данным носимых устройств большие 

нейросети достигли заметных успехов [8]. Они позволяют в реальном времени 

отслеживать показатели движений и состояния здоровья, генерируя уведомле-

ния при выявлении опасных событий (например, резкое падение человека, при-

ступ аритмии и т. д.). 

Для текстовых данных (таких как журналы событий, протоколы и отчеты) 

все шире используются большие языковые модели трансформерного типа. 

Они способны интерпретировать последовательности записей как связный текст 

и по контексту выявлять аномалии или критические события [9]. В сфере кибер-

безопасности подобные модели анализируют сетевые логи и сообщения, распо-

знавая характерные предвестники атак и киберинцидентов, что повышает опе-

ративность реагирования на угрозы [10]. 

Сочетание мультимодального анализа данных на базе больших моделей 

уже находит применение в различных прикладных областях. В промышленности 

системы компьютерного зрения на основе глубоких нейросетей контролируют 

соблюдение техники безопасности на производстве например автоматически 

обнаруживают отсутствие каски или спецодежды у рабочего [11]. Анализ вибра-

ций и других сенсорных данных станков с помощью рекуррентных нейросетей 

позволяет реализовать предиктивное обслуживание оборудования (predictive 

maintenance), выявляя отклонения в работе механизмов и предотвращая ава-

рии [12]. В сфере «умных» домов крупные модели мониторят повседневную ак-

тивность жильцов для повышения комфорта и безопасности: так, по данным ка-

мер и датчиков движения можно определить, что пожилой человек упал, и ав-

томатически вызвать помощь [13]. Носимые фитнес-устройства с интегрирован-

ными моделями HAR отслеживают физическую активность и состояние здоровья 

пользователя, сигнализируя при обнаружении аномалий (например, чрезмерно 

длительной неподвижности или аритмии) [8]. В системах общественной без-

опасности нейросетевые алгоритмы видеоаналитики способны распознавать по-

дозрительные действия в режиме реального времени: оставленные без при-

смотра предметы, агрессивное поведение в толпе, тем самым помогая предот-
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вращать правонарушения и инциденты [10]. Еще одним направлением приме-

нения крупных моделей являются медицина и здоровье: обработка потоков дан-

ных от носимых сенсоров и даже анализ речи/текста пациентов (записи сессий, 

соцсети) с помощью LLM дают возможность выявлять признаки стресса, депрес-

сии или ухудшения физического состояния на ранних стадиях [2, 13]. 

Таким образом, достижения последних лет демонстрируют универсаль-

ность и эффективность больших нейросетевых моделей в задачах мониторинга: 

от производственных цехов до домашней обстановки они позволяют повысить 

качество наблюдения и снизить влияние человеческого фактора. Вместе 

с тем многие существующие решения либо сфокусированы на одной модально-

сти данных, либо требуют значительных ресурсов и предварительной настройки 

под конкретные сценарии. Актуальной задачей остается разработка единой ин-

теллектуальной системы, способной интегрировать несколько источников дан-

ных и автоматически выявлять сложные ситуации без заранее прописанных пра-

вил. В следующем разделе формально описана постановка задачи для такого 

сервиса. 

2. ПОСТАНОВКА ЗАДАЧИ 

Цель настоящего исследования состояла в следующем: разработать про-

тотип интеллектуальной системы мониторинга, способной локально в автоном-

ном режиме анализировать мультимодальные данные активности (видеоизоб-

ражения, показания сенсоров, текстовые логи) и своевременно обнаруживать 

потенциально опасные или аномальные ситуации. В цель работы входила также 

оценка применимости крупных предобученных нейросетевых моделей для от-

слеживания различных видов активности в реальных сценариях и выработки со-

ответствующей реакции на выявленные события. 

Для достижения этой цели решались следующие задачи: во-первых, реа-

лизовать локальное развертывание современных больших моделей (языковых 

и визуальных) и обеспечить их совместную работу с различными типами вход-

ных данных; во-вторых, разработать набор тестовых сценариев, имитирующих 

типичные ситуации в области наблюдения (чрезвычайные происшествия, не-

штатные события и штатный режим), чтобы проверить работоспособность си-
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стемы; в-третьих, провести сравнительную оценку нескольких моделей по точ-

ности распознавания ситуаций и производительности (времени отклика) и 

на этой основе определить оптимальные решения и узкие места прототипа. 

Отметим, что хотя мультимодальные системы теоретически могут вклю-

чать анализ звука и речи, в рамках настоящей работы аудиомодальность не рас-

сматривается. Это обусловлено, с одной стороны, ограниченной поддержкой 

аудиовходов в большинстве доступных LLM- и Vision-моделей (на момент иссле-

дования), а с другой – отсутствием звуковых данных во многих системах видео-

наблюдения (звук обычно не записывается). Тем не менее заложенная архитек-

тура сервиса допускает расширение за счет подключения дополнительных мо-

дальностей, включая звук или биометрические датчики, при наличии соответ-

ствующих моделей и аппаратуры. 

3. ЛОКАЛЬНОЕ РАЗВЕРТЫВАНИЕ МОДЕЛЕЙ С ПОМОЩЬЮ OLLAMA  

Для выполнения поставленной задачи было решено использовать локаль-

ное развертывание больших нейросетевых моделей, что обеспечивает автоном-

ность и конфиденциальность обработки данных. В прототипе использован ин-

струмент Ollama – легковесная платформа, позволяющая запускать различные 

предобученные LLM- и Vision-модели на персональном компьютере и взаимо-

действовать с ними через простой интерфейс. Ollama поддерживает современ-

ные архитектуры моделей (семейства LLaMA, Mistral и др.) и предоставляет гиб-

кий REST API для их интеграции [14]. Одним из ключевых преимуществ Ollama 

является возможность полностью локальной работы: все вычисления происхо-

дят на стороне пользователя, без отправки входных данных (например, видео-

кадров или логов) на удаленные серверы. Это особенно важно при работе с чув-

ствительной информацией, требующей соблюдения политики безопасности 

и приватности [15]. 

Взаимодействие с моделью в Ollama осуществляется путем отправки HTTP-

запросов на локальный сервер (по умолчанию – порт 11434). Запрос формиру-

ется в формате JSON и включает обязательные поля:  

• model – идентификатор выбранной модели (название веса LLM/Vision-мо-

дели, загруженной в Ollama); 

• prompt – текст инструкции или вопрос, передаваемый модели; 
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• temperature – параметр стохастичности генерации (0 – детерминирован-

ный вывод, 1 – максимально разнообразный вывод); 

• format – требуемый формат ответа (например, "text" для обычного текста 

или "json" для структурированного вывода); 

• stream – режим выдачи результата (при значении true ответ возвращается 

по мере генерации, при false – единым блоком) [15]. 

Правильное составление промпта имеет решающее значение для получе-

ния корректного ответа модели. Если запрос сформулирован нечетко или дву-

смысленно, даже самая мощная модель может выдать неверный или неумест-

ный результат, что снизит качество работы всей системы [16]. В рамках прото-

типа особое внимание уделялось тому, чтобы промпт ясно описывал модельную 

задачу: например, содержал инструкции проанализировать конкретные данные 

и выдать ответ в требуемом формате (структурированном виде). Для удобства 

интеграции была использована официальная Python-библиотека Ollama [17], 

предоставляющий высокоуровневые функции для отправки запросов и получе-

ния ответов от локального сервера (см. рис. 1 и 2). 

 

Рис. 1. Фрагмент запроса к Ollama 

 

Рис. 2. Запрос к Ollama в Python 
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На рис. 3 представлен полученный результат, представляющий собой 

словарь, содержащий поля с метаданными, а также поле response, содержащее 

сгенерированный моделью текст. 

 

Рис. 3. Ответ модели 

Кроме того, предусмотрена возможность включения дополнительных па-

раметров, позволяющих более тонко настраивать поведение модели: 

• top_p – параметр выборки по вероятностному порогу (nucleus 

sampling); 

• num_ctx – максимальное количество токенов контекста; 

• repeat_penalty – штраф за повторение одинаковых токенов; 

• stop – список токенов-стопов, при достижении которых генерация 

прекращается [15]. 

4. ОБРАБОТКА МУЛЬТИМОДАЛЬНЫХ ДАННЫХ 

Сервис построен по модульному принципу, где различные типы входных 

данных преобразуются в удобный для модели вид и объединяются в рамках 

единого запроса. Общая архитектура прототипа включает следующие компо-

ненты: 

• видео: периодически из видеопотока (IP-камеры наблюдения или видео-

записи) извлекаются кадры-изображения, которые затем могут быть поданы 

на вход модели; 

• сенсоры: показания датчиков (например, температуры и влажности воз-

духа) агрегируются за небольшие интервалы времени и представляются в тек-

стовом формате. Для эксперимента значения датчиков моделировались: были 

заданы нормальные и аномальные условия (повышение температуры, сниже-

ние влажности как индикатор возможного возгорания); 

• логи: из внешних систем безопасности или контроля доступа берутся за-

писи журнала событий за недавний промежуток времени. Эти текстовые записи 
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включают отметки времени (в формате ISO 8601 [18]) и описание произошедших 

событий (например, срабатывание пожарной сигнализации, отключение дат-

чика и т. д.). Для испытаний был подготовлен образец такого лога (например, 

фрагмент журнала системы контроля и управления доступом (СКУД)), пригод-

ный для анализа моделью. 

Все перечисленные выше данные формируются в единый промпт для мо-

дели. Таким образом, на вход модели поступает комплексная информация: од-

новременно и изображение с камеры, и соответствующие этому моменту пока-

зания сенсоров, и текстовые сообщения от других систем. Модель должна на ос-

нове всех вводных данных сформировать вывод о ситуации в наблюдаемой 

зоне. Благодаря использованию мультимодальных возможностей LLM (в частно-

сти, моделей, умеющих работать с визуальной информацией) вся аналитика вы-

полняется единым интеллектуальным модулем – без необходимости раздель-

ной обработки каждым источником и последующего объединения результатов. 

Это упрощает архитектуру и позволяет модели самой учитывать взаимосвязи 

между различными модальностями данных. 

5. ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА 

Для проверки работоспособности прототипа и оценки эффективности раз-

ных моделей была разработана методика тестирования на основе нескольких 

сценариев. Общий процесс эксперимента состоит из трех этапов. 

Этап 1. Подготовка тестовых данных. На первом этапе для каждой мо-

дальности были сформированы контрольные наборы данных, имитирующие си-

туации в области наблюдения. В качестве видеоданных использовались изобра-

жения, сгенерированные нейросетью (модель OpenAI ChatGPT-4o-mini [19]), 

это позволило варьировать содержимое кадров (наличие людей, обстановка) 

и одновременно избежать использования реальных снимков. Для датчиков 

были заданы типичные ряды значений: в нормальных условиях – температура 

~22 °C и влажность ~45%, в аномальном случае – резкое повышение темпера-

туры (до ~60 °C) и понижение влажности (< 20%) как признак возгорания. Кроме 

того, был подготовлен текстовый лог из системы безопасности: каждая запись 
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содержала поле timestamp (время события) и поле event (описание самого со-

бытия) (рис. 4). Такой лог имитировал внешние сигналы, дополняющие данные 

датчиков и видео. 

 

Рис. 4. Сгенерированное фото с камеры видеонаблюдения. Человек упал. 

Зафиксирована аварийная ситуация.  

 

Рис. 5. Сгенерированное фото с камеры видеонаблюдения. Пустой коридор 

в офисе. Система видеонаблюдения не обнаружила нарушений. 
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Рис. 6. Лог с системы безопасности. В данном примере поле timestamp 

означает время события в формате ISO 8601 [23], а event – описание самого 

события. 

Этап 2. Выбор моделей и сценарии анализа. Для решения задачи были 

отобраны шесть мультимоделей, доступные в библиотеке Ollama: gemma3:12b 

[20], llava:13b [21], llama3.2-vision:11b [22], minicpm-v:8b [23], qwen2.5vl:7b [24], 

mistral-small3.2:24b [25]. Эти модели выбраны исходя из популярности и способ-

ности работать с изображениями наравне с текстом [14]. Каждая модель тести-

ровалась на одном и том же наборе из четырех сценариев, заранее подготов-

ленных на этапе 1. Каждый сценарий представлял собой комбинацию данных 

различных модальностей, соответствующих определенной ситуации. 

Сценарий 1: «Человек упал». Видеокадр (условно рис. 4) содержит изоб-

ражение человека, лежащего на полу без сознания; значения датчиков (рис. 6) 

находятся в нормальном диапазоне (нет признаков возгорания или других ано-

малий). Ожидается, что модель, проанализировав картинку, распознает факт па-

дения человека и сформирует вывод о критической ситуации (необходима по-

мощь). 

Сценарий 2: «Пожар с людьми». Камера зафиксировала в помещении 

присутствие людей (рис. 4, на изображении видны люди); датчики (рис. 7) пока-

зывают аномальные значения – высокая температура, низкая влажность; в логе 

присутствует запись о срабатывании пожарной сигнализации. Модель должна 

учесть все источники: по логам понять, что произошел пожар, по датчикам – под-

тверждение возгорания, по видео – наличие людей. Ожидаемый вывод: крити-

ческая ситуация, в помещении пожар и находятся люди, требуется немедленная 

реакция. 

Сценарий 3: «Пожар без людей». На видеокадре (рис. 5) изображено пу-

стое помещение или коридор; датчики (рис. 7) также сигнализируют о пожаре 

(высокая температура, сухость), но из логов нет сведений о присутствии людей. 
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В этом случае модель должна сообщить о пожаре, подчеркнув отсутствие людей 

(тем не менее ситуация все равно критическая, требует вмешательства, напри-

мер пожаротушения, но эвакуации людей не требуется). 

Сценарий 4: «Штатный режим». Изображение камеры (рис. 5) – пустой 

коридор, все показатели датчиков в норме (используется тот же набор, что 

и в сценарии 1, рис. 6), внешних сигналов нет. Это контрольный сценарий благо-

получного состояния, на который модель не должна выдавать тревожную реак-

цию (ожидается, что система подтвердит отсутствие подозрительных событий). 

Для автоматизации тестирования был написан скрипт на Python, который 

последовательно подставлял данные каждого сценария в промпт и опрашивал 

каждую из выбранных моделей через API Ollama. Скрипт измерял время выпол-

нения запроса для каждой модели и сохранял ответы. Чтобы добиться воспро-

изводимых результатов, параметр temperature для моделей устанавливался 

равным 0 (детерминированная генерация), а формат ответа задавался как JSON 

с двумя полями: need_help (логический флаг, сигнализирует о необходимости 

реагирования) и message (текстовое описание ситуации от лица модели). Таким 

образом, от каждой модели в каждом сценарии получался структурированный 

ответ (рис. 7). 

 

Рис. 7. Пример структурированного ответа от моделей. 

Этап 3. Оценка результатов. На заключительном этапе проводилась 

оценка качества ответов моделей. Для каждой модели и каждого сценария за-

ранее известен правильный ответ (требуется реакция или нет, корректное опи-

сание ситуации). Мы трактовали задачу как бинарную классификацию сцена-

риев на требующие (критические) и нетребующие вмешательства (нормальные). 

На этой основе вычислялись стандартные метрики: точность (Precision), полнота 

(Recall) и сводная F1-мера для каждого набора ответов [26, 27]. Кроме того, для 

практической значимости сравнивалось среднее время отклика различных мо-
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делей. В табл. 1 приведены суммарные показатели качества классификации си-

туаций для каждой модели, в табл. 2 – среднее время ответа модели на один 

сценарий. 

5. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 

По итогам экспериментов получены количественные оценки точности ра-

боты мультимодальных моделей в задаче мониторинга активности (выявления 

критических ситуаций). Табл. 1 демонстрирует сравнение методов с помощью 

метрик F1, Precision и Recall для шести моделей. Табл. 2 содержит данные о про-

изводительности – время, затрачиваемое моделями на обработку одного сцена-

рия в среднем (в секундах). 

Табл. 1. Качество определения критической ситуации  

(средние значения метрик по результатам 4-х сценариев) 

Модель Precision Recall F1-Score 

gemma3:12b 1.00 0.67 0.80 

llava:13b 0.00 0.00 0.00 

minicpm-v:8b 1.00 0.50 0.67 

qwen2.5vl:7b 0.00 0.00 0.00 

mistral-small3.2:24b 1.00 0.67 0.80 

llama3.2-vision:11b 1.00 0.50 0.67 

Табл. 2. Время отклика моделей на один сценарий (в секундах) 

Модель Сценарий 1 Сценарий 2 Сценарий 3 Сценарий 4 

gemma3:12b 17.06 6.42 5.89 6.11 

llava:13b 21.74 12.20 10.61 9.32 

minicpm-v:8b 5.87 1.84 3.61 1.49 

qwen2.5vl:7b 20.41 18.20 17.97 18.37 

mistral-small3.2:24b 43.54 40.89 37.45 37.91 

llama3.2-vision:11b 31.92 29.33 28.70 29.91 

 

Таким образом, из полученных результатов видно, лучшими оказались 

gemma3:12b и mistral-small3.2: они правильно отреагировали на три из четырех 

сценариев, что подтверждается наибольшим значением F1 = 0.8. Кроме того, 
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они не допустили ни одного ложного срабатывания (Precision = 1.00), хотя и про-

пустили один из критических сценариев (Recall = 0.67). Модели minicpm-v:8b 

и llama3.2-vision:11b также продемонстрировали вполне приемлемую точность 

(F1 = 0.67), без ложных тревог, но с пропуском части инцидентов. Наихудший ре-

зультат оказался у моделей llava:13b и qwen2.5vl:7b – они не смогли корректно 

идентифицировать ни одного сценария (все выходные ответы были ошибоч-

ными), о чем говорят нулевые значения метрик. Вероятно, модели оказались 

наименее подходящими для подобных комплексных запросов, возможно, из-за 

ограниченной специализации или недостаточной обучения для интеграции раз-

личных типов данных. 

Что касается скорости работы, здесь лидирует облегченная модель 

minicpm-v:8b – ее среднее время отклика в простых сценариях составляло по-

рядка 1.7 с (сценарии 2 и 4), и даже в более сложных ситуациях (сценарии 1 и 3) 

она укладывалась в 6 с. Модель gemma3:12b показывала стабильное время от-

вета около 10–20 с на сценарий, что быстрее тяжелых mistral-small3.2:24b 

и llama3.2-vision (на отдельных задачах время доходило до 45 с). Модели 

llava:13b и qwen2.5vl:7b в целом работали сравнительно быстро (до 21 с), однако 

их низкие точности делают скорость несущественным фактором. Следует отме-

тить, что все модели запускались на одной локальной машине, поэтому абсолю-

тизировать приведенные цифры не стоит – при развертывании на производи-

тельном оборудовании время реакции может быть значительно снижено. 

В целом эксперимент подтвердил возможность применения больших 

мультимодальных моделей для мониторинга: по крайней мере две из проверен-

ных моделей (gemma3:12b и minicpm-v:8b) сумели обнаружить большинство за-

данных событий, правильно интерпретировав и совместив информацию из раз-

ных источников. Это весьма обнадеживающий результат, учитывая, что модели 

не проходили специального обучения под наши сценарии, а использовались 

«как есть». Таким образом, нейросети, предобученные на больших данных, в со-

четании с грамотной инженерией промптов могут успешно решать задачи ин-

теллектуального анализа ситуации. 

Однако эксперимент выявил и ряд ограничений текущего прототипа.  

Во-первых, качество вывода значительно варьируется от модели к модели: вы-

бор подходящей архитектуры критически влияет на точность. Модели, лучше 

настроенные на визуально-текстовый ввод (например, gemma3:12b), показали 
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высокую результативность, тогда как другие оказались неприменимы в данном 

виде. Во-вторых, производительность системы пока оставляет желать лучшего – 

время отклика в десятки секунд неприемлемо для ряда практических сценариев 

(например, для систем реального времени, где счет может идти на секунды). 

Это частично связано с использованием больших моделей (12–13 млрд парамет-

ров) на CPU; ускорение возможно при переходе на GPU-версии или при оптими-

зации моделей (квантование, аппаратное ускорение). В-третьих, прототип был 

протестирован на ограниченном наборе синтетических данных. Отметим, что 

выбранные сценарии были приближены к реальным условиям, на практике мо-

гут возникать более сложные обстановки, шумы и непредусмотренные комби-

нации событий, где поведение модели потребует дополнительной проверки. 

Тем не менее применимость в реальных условиях представляется вполне 

вероятной после доработки системы. Одним из преимуществ предложенного 

подхода является его гибкость: путем замены или обновления модели в Ollama 

можно улучшить показатели без кардинальной переработки всей системы. 

Кроме того, локальное исполнение гарантирует, что чувствительные видеодан-

ные и логи не покидают пределов устройства/локальной сети – это важно 

для организаций, предъявляющих строгие требования к безопасности данных 

(например, на производствах с режимом секретности или в медицинских учре-

ждениях). Автономность решения означает и независимость от сетевой инфра-

структуры: мониторинг не прервется даже при остановится доступа к Интернету 

или облаку.  

 ЗАКЛЮЧЕНИЕ 

Разработанный прототип интеллектуального сервиса мультимодального 

мониторинга продемонстрировал перспективность применения больших 

предобученных нейросетевых моделей в системах отслеживания активности. 

В ходе экспериментов показано, что современные модели способны интегриро-

ванно анализировать данные разных типов (изображения, числовые показатели, 

текстовые события) и успешно выявлять сложные ситуации, ранее обнаружива-

емые лишь человеком или узкоспециализированными алгоритмами. Использо-

вание локального фреймворка Ollama позволило запускать LLM-модели непо-

средственно на месте сбора данных, обеспечивая автономную работу системы 
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и защиту информации. Полученные результаты подтверждают работоспособ-

ность подхода: наиболее точная модель (gemma3:12b) правильно распознала 

75% сценариев, а более быстрая minicpm-v:8b при незначительном снижении 

полноты также может считаться успешной.  

Вместе с тем проведенное исследование выявило и направления для даль-

нейшей работы. Одной из первоочередных задач является повышение быстро-

действия: планируется оптимизировать модели (например, за счет квантования 

до меньшей разрядности, использования версий «LoRA» или дистилляции зна-

ний) и протестировать их на аппаратном ускорителе, чтобы добиться сокраще-

ния времени реакции до приемлемых величин. Еще одно перспективное 

направление – это обогащение интеллектуального анализа с помощью онтоло-

гической поддержки сценариев. Введение семантической модели предметной 

области (онтологии событий и объектов) могло бы помочь интерпретировать от-

веты модели и уменьшить вероятность ошибок, особенно в нетипичных случаях. 

Кроме того, интеграция дополнительных модальностей (например, аудио, 

как обсуждалось выше) расширит возможности мониторинга: звук и речь могут 

предоставить ценные сведения о происходящем (крики, шумы аварий и пр.). 

Настоящая работа выполнялась в рамках инициативного исследования, 

без прямого привлечения сторонних организаций. Первичное внедрение прото-

типа планируется осуществить на учебно-исследовательских стендах Казанского 

федерального университета, что позволит собрать дополнительную обратную 

связь и улучшить систему. В перспективе доработанное решение может быть 

опробовано в условиях, приближенных к промышленным, например в лабора-

ториях или в рамках пилотного проекта на предприятии, заинтересованном в ин-

теллектуальных системах безопасности. Таким образом, разработанный сервис 

представляет собой шаг вперед к созданию универсальных мультимодальных 

средств мониторинга, объединяющих достижения в области больших моделей с 

практическими требованиями автономности и безопасности. 
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Abstract 

The article presents an approach to the development of an intelligent multi-

modal monitoring service for the surveillance area using large neural network models. 

The proposed solution is capable of analyzing heterogeneous data – video streams, 

environmental sensor signals (temperature, humidity, etc.), and event logs – to obtain 

a complete picture of what is happening. The main tools used are large language and 

visual models (for example, LLaMA, MiniCPM‑V, etc.) deployed locally using the 

Ollama platform, which provides autonomous and secure information processing 

without the need to transfer data to the cloud. A prototype system has been devel-

oped that works offline and is capable of detecting critical situations, abnormal devi-

ations from the norm and contextually significant events in the observed area. The 

method of forming test scenarios and conducting a qualitative assessment of the 

model's performance using the metrics F1-measure, Precision, Recall on a set of var-

ious situations is described. The experimental results confirm the applicability of mul-

timodal models for monitoring tasks: the prototype successfully recognizes complex 

patterns of behavior and demonstrates the potential of large models in building adap-

tive and scalable surveillance systems. 

Keywords: intelligent service, multimodal monitoring, Ollama, Large Language 

Models, activity tracking, video analytics, artificial intelligence. 
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